遗传 ›› 2021, Vol. 43 ›› Issue (2): 134-141.doi: 10.16288/j.yczz.20-246
收稿日期:
2020-07-28
出版日期:
2021-02-16
发布日期:
2020-12-30
基金资助:
Guangwei Hu1,2(), Zhenzhen Zhang1,2, Huan Gao1,2
Received:
2020-07-28
Online:
2021-02-16
Published:
2020-12-30
Supported by:
摘要:
两侧对称动物左右体轴建立机制研究是发育生物学领域重要的基础科学问题之一。文昌鱼(amphioxus)由于其特殊的进化地位以及与脊椎动物相似的胚胎发育模式和身体构筑方式,是研究动物左右体轴建立机制的理想模式物种。近年来随着文昌鱼室内全人工繁育技术、高效显微注射技术和基因敲除技术的建立,国内外学者在左右体轴建立机制研究上取得了丰硕的成果。本文从文昌鱼胚胎左右不对称发育特点出发,总结了近期文昌鱼左右体轴建立方面取得的研究进展,并提出了文昌鱼左右体轴调控网络图:纤毛运动导致Hh蛋白在文昌鱼中不对称分布(L<R),从而导致Hh信号通路的不对称激活以及Cer的不对称表达(L<R),Cer对Nodal具有抑制作用,由此导致依赖于Nodal活性的基因呈左右不对称表达并最终诱导胚胎左右体轴的正确建立;BMP信号可能并不提供左右不对称信号,但却是Cer和Nodal正确表达的必要条件。
胡广伟, 张珍珍, 高焕. 文昌鱼左右体轴建立机制的研究进展[J]. 遗传, 2021, 43(2): 134-141.
Guangwei Hu, Zhenzhen Zhang, Huan Gao.
[1] | Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development , 2012, 139(18): 3257-3262. |
[2] | Ramsdell AF, Yost HJ. Molecular mechanisms of vertebrate left-right development. Trends Genet , 1998, 14(11): 459-465. |
[3] | Blum M, Feistel K, Thumberger T, Schweickert A. The evolution and conservation of left-right patterning mechanisms. Development , 2014, 141(8): 1603-1613. |
[4] | Wang L, Su HY, Wang CL, Wang YH. The bridge between invertebrate and vertebrate—the cephalochordate amphioxus. T Oceanol Limnol, 2007, (2): 45-51. |
王磊, 宿红艳, 王昌留, 王艳华. 从无脊椎动物到脊椎动物的纽带—头索动物文昌鱼. 海洋湖沼通报, 2007, (2): 45-51. | |
[5] | Zhang SC, Yuan JD, Li HY. Amphioxus—model animal for insights into the origin and evolution of the vertebrates. Chin Bull Life Sci , 2001, 13(5): 214-218. |
张士璀, 袁金铎, 李红岩. . 文昌鱼—研究脊椎动物起源和进化的模式动物. 生命科学, 2001, 13(5): 214-218. | |
[6] |
Holland LZ, Laudet V, Schubert M. The chordate amphioxus: an emerging model organism for developmental biology. Cell Mol Life Sci , 2004, 61(18): 2290-2308.
doi: 10.1007/s00018-004-4075-2 pmid: 15378201 |
[7] | Holland LZ, Onai T. Early development of cephalochordates (amphioxus). Wiley Interdiscip Rev Dev Biol , 2012, 1(2): 167-183. |
[8] |
Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PWH, Satoh N, Rokhsar DS. The amphioxus genome and the evolution of the chordate karyotype. Nature , 2008, 453(7198): 1064-1071.
pmid: 18563158 |
[9] | Huang SF, Tao X, Yuan SC, Zhang YH, Li PY, Beilinson HA, Zhang Y, Yu WJ, Pontarotti P, Escriva H, Le Petillon Y, Liu XL, Chen SW, Schatz DG, Xu AL. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell , 2016, 166(1): 102-114. |
[10] | Li G, Yang X, Shu ZH, Chen XY, Wang YQ. Consecutive spawnings of Chinese amphioxus, Branchiostoma belcheri, in captivity. PLoS One , 2012, 7(12): e50838. |
[11] | Li G, Shu ZH, Wang YQ. Year-round reproduction and induced spawning of Chinese amphioxus, Branchiostoma belcheri, in laboratory. PLoS One , 2013, 8(9): e75461. |
[12] | Liu X, Li G, Feng J, Yang X, Wang YQ. An efficient microinjection method for unfertilized eggs of Asian amphioxus Branchiostoma belcheri . Dev Genes Evol , 2013, 223(4): 269-278. |
[13] |
Li G, Feng J, Lei Y, Wang J, Wang H, Shang LK, Liu DT, Zhao H, Zhu Y, Wang YQ. Mutagenesis at specific genomic loci of amphioxus Branchiostoma belcheri using TALEN method . J Genet Genomics , 2014, 41(4): 215-219.
pmid: 24780619 |
[14] | Shi CG, Huang J, Chen SX, Li G, Wang YQ. Generation of two transgenic amphioxus lines using the Tol2 transposon system. J Genet Genomics , 2018, 45(9): 513-516. |
[15] |
Minguillón C, Garcia-Fernàndez J. The single amphioxus Mox gene: insights into the functional evolution of Mox genes, somites, and the asymmetry of amphioxus somitogenesis. Dev Biol , 2002, 246(2): 455-465.
doi: 10.1006/dbio.2002.0660 pmid: 12051829 |
[16] | Lu TM, Luo YJ, Yu JK. BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development , 2012, 139(11): 2020-2030. |
[17] |
Glardon S, Holland LZ, Gehring WJ, Holland ND. Isolation and developmental expression of the amphioxus Pax-6 gene ( AmphiPax-6 ): insights into eye and photoreceptor evolution . Development , 1998, 125(14): 2701-2710.
pmid: 9636084 |
[18] | Lacalli T. Mucus secretion and transport in amphioxus larvae: organization and ultrastructure of the food trapping system, and implications for head evolution. Acta Zool , 2008, 89(3): 219-230. |
[19] |
Holland ND, Holland LZ. Laboratory spawning and development of the Bahama lancelet, Asymmetron lucayanum (Cephalochordata): fertilization through feeding larvae . Biol Bull , 2010, 219(2): 132-141.
pmid: 20972258 |
[20] | Chea HK, Wright CV, Swalla BJ. Nodal signaling and the evolution of deuterostome gastrulation. Dev Dyn , 2005, 234(2): 269-278. |
[21] |
Duboc V, Lepage T. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes. J Exp Zool B Mol Dev Evol , 2008, 310(1): 41-53.
pmid: 16838294 |
[22] |
Brennan J, Norris DP, Robertson EJ. Nodal activity in the node governs left-right asymmetry. Genes Dev , 2002, 16(18): 2339-2344.
doi: 10.1101/gad.1016202 pmid: 12231623 |
[23] |
Kawasumi A, Nakamura T, Iwai N, Yashiro K, Saijoh Y, Belo JA, Shiratori H, Hamada H. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev Biol , 2011, 353(2): 321-330. Left-right (L-R) asymmetry in the mouse embryo is generated in the node and is dependent on cilia-driven fluid flow, but how the initial asymmetry is transmitted from the node to the lateral plate has remained unknown. We have now identified a transcriptional enhancer (ANE) in the human LEFTY1 gene that exhibits marked L>R asymmetric activity in perinodal cells of the mouse embryo. Dissection of ANE revealed that it is activated in the perinodal cells on the left side by Nodal signaling, suggesting that Nodal activity in the node is asymmetric at a time when Nodal expression is symmetric. Phosphorylated Smad2/3 (pSmad2) indeed manifested an L-R asymmetric distribution at the node, being detected in perinodal cells preferentially on the left side. This asymmetry in pSmad2 distribution was found to be generated not by unidirectional transport of Nodal but rather as a result of L<R asymmetric expression of the Nodal antagonist Cerl2. For various mutant embryos examined, the asymmetry in pSmad2 distribution among the perinodal cells closely matched that in lateral plate mesoderm (LPM). However, autocrine-paracrine Nodal signaling in perinodal cells is dispensable for L-R patterning of LPM, given that its inhibition by expression of dominant negative forms of Smad3 or ALK4 was still associated with normal (left-sided) Nodal expression in LPM. Our results suggest that LPM is the direct target of Nodal secreted by the perinodal cells, and that an L>R distribution of active Nodal in the node is translated into the asymmetry in LPM. (C) 2011 Elsevier Inc.
doi: 10.1016/j.ydbio.2011.03.009 |
[24] |
Saijoh Y, Oki S, Ohishi S, Hamada H. Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev Biol , 2003, 256(1): 160-172.
doi: 10.1016/s0012-1606(02)00121-5 pmid: 12654299 |
[25] |
Grimes DT, Burdine RD. Left-right patterning: Breaking symmetry to asymmetric morphogenesis. Trends Genet , 2017, 33(9): 616-628.
doi: 10.1016/j.tig.2017.06.004 pmid: 28720483 |
[26] | Onai T, Yu JK, Blitz IL, Cho KWY, Holland LZ. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol , 2010, 344(1): 377-389. |
[27] | Yasui K, Zhang S, Uemura M, Saiga H. Left-right asymmetric expression of BbPtx, a Ptx-related gene, in a lancelet species and the developmental left-sidedness in deuterostomes. Development , 2000, 127(1): 187-195. |
[28] |
Yu JK, Holland LZ, Holland ND. An amphioxus nodal gene (AmphiNodal) with early symmetrical expression in the organizer and mesoderm and later asymmetrical expression associated with left-right axis formation. Evol Dev , 2002, 4(6): 418-425.
pmid: 12492142 |
[29] | Le Petillon Y, Oulion S, Escande ML, Escriva H, Bertrand S. Identification and expression analysis of BMP signaling inhibitors genes of the DAN family in amphioxus. Gene Expr Patterns , 2013, 13(8): 377-383. |
[30] |
Soukup V, Yong LW, Lu TM, Huang SW, Kozmik Z, Yu JK. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. Evodevo , 2015, 6: 5.
doi: 10.1186/2041-9139-6-5 pmid: 25954501 |
[31] | Li G, Liu X, Xing CF, Zhang HY, Shimeld SM, Wang YQ. Cerberus-Nodal-Lefty-Pitx signaling cascade controls left - right asymmetry in amphioxus . Proc Natl Acad Sci USA , 2017, 114(14): 3684-3689. |
[32] | Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal , 2011, 23(4): 609-620. |
[33] | Fujiwara T, Dehart DB, Sulik KK, Hogan BLM. Distinct requirements for extra-embryonic and embryonic bone morphogenetic protein 4 in the formation of the node and primitive streak and coordination of left-right asymmetry in the mouse. Development , 2002, 129(20): 4685-4696. |
[34] |
Mine N, Anderson RM, Klingensmith J. BMP antagonism is required in both the node and lateral plate mesoderm for mammalian left-right axis establishment. Development , 2008, 135(14): 2425-2434.
pmid: 18550712 |
[35] |
Piedra ME, Ros MA. BMP signaling positively regulates Nodal expression during left right specification in the chick embryo. Development , 2002, 129(14): 3431-3440.
pmid: 12091313 |
[36] | Schlange T, Arnold HH, Brand T. BMP2 is a positive regulator of Nodal signaling during left-right axis formation in the chicken embryo. Development , 2002, 129(14): 3421-3429. |
[37] | Bessodes N, Haillot E, Duboc V, Röttinger E, Lahaye F, Lepage T. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. PLoS Genet , 2012, 8(12): e1003121. |
[38] |
Luo YJ, Su YH. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol , 2012, 10(10): e1001402.
pmid: 23055827 |
[39] | Soukup V, Kozmik Z. The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus. Dev Biol , 2018, 434(1): 164-174. |
[40] |
Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila . Nature , 1980, 287(5785): 795-801.
doi: 10.1038/287795a0 pmid: 6776413 |
[41] |
Forbes AJ, Nakano Y, Taylor AM, Ingham PW. Genetic analysis of hedgehog signalling in the Drosophila embryo . Dev Suppl , 1993: 115-124.
pmid: 1982529 |
[42] | Qi XL, Wang YJ, Wu G. Progress of study on hedgehog signaling pathway. Chin J Cell Biol , 2013, 35(8): 1211-1220. |
齐晓龙, 王玉炯, 吴更. Hedgehog信号通路研究进展. 中国细胞生物学学报, 2013, 35(8): 1211-1220. | |
[43] | Shimeld SM. The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev Genes Evol , 1999, 209(1): 40-47. |
[44] |
Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell , 1995, 82(5): 803-814.
pmid: 7671308 |
[45] | Wang H, Li G, Wang YQ. Generating amphioxus Hedgehog knockout mutants and phenotype analysis . Hereditas ( Beijing ), 2015, (10): 1036-1043. |
王慧, 李光, 王义权. 文昌鱼Hedgehog 基因敲除和突变体表型分析. 遗传, 2015, (10): 1036-1043. | |
[46] |
Hu GW, Li G, Wang H, Wang YQ. Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression . Development , 2017, 144(24): 4694-4703.
doi: 10.1242/dev.157172 pmid: 29122841 |
[47] |
Zhu X, Shi CG, Zhong YH, Liu X, Yan QN, Wu XT, Wang YQ, Li G. Cilia-driven asymmetric Hedgehog signalling determines the amphioxus left-right axis by controlling Dand5 expression . Development , 2020, 147(1): dev182469. Cilia rotation-driven nodal flow is crucial for the left-right (L-R) break in symmetry in most vertebrates. However, the mechanism by which the flow signal is translated to asymmetric gene expression has been insufficiently addressed. Here, we show that Hedgehog (Hh) signalling is asymmetrically activated (L<R) in the region in which initial asymmetric Dand5 expression is detected. Upregulation of Hh signalling on the left side of wild-type embryos induces ectopic Dand5 expression on the left side, and the unilateral recovery of Hh signalling in Hh homozygous mutants induces Dand5 expression in the Hh signal recovery side. Immunofluorescence analysis results revealed that Hh fusion protein is asymmetrically enriched in the anterior-right paraxial mesoderm at the early neurula stage. Inhibiting embryonic cilia motility using methylcellulose (MC) blocks Hh protein enrichment on the right hand side and randomizes Dand5 expression and organ positioning along the L-R axis. These findings present a model showing that cilia movement is crucial for the symmetry breaks in amphioxus through asymmetric Hh protein transport. The resultant asymmetric Hh signalling provides a clue into the induction of asymmetric Dand5 expression.This article has an associated 'The people behind the papers' interview.
doi: 10.1242/dev.182469 pmid: 31826864 |
[48] |
Lee JD, Anderson KV. Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn , 2008, 237(12): 3464-3476.
pmid: 18629866 |
[49] |
Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K, Blum M. Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol , 2007, 17(1): 60-66.
doi: 10.1016/j.cub.2006.10.067 pmid: 17208188 |
[50] | Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development , 2005, 132(6): 1247-1260. |
[51] |
Blum M, Weber T, Beyer T, Vick P. Evolution of leftward flow. Semin Cell Dev Biol , 2009, 20(4): 464-471.
pmid: 19056505 |
[52] |
Hirokawa N, Tanaka Y, Okada Y, Takeda S. Nodal flow and the generation of left-right asymmetry. Cell , 2006, 125(1): 33-45.
doi: 10.1016/j.cell.2006.03.002 pmid: 16615888 |
[53] |
Soukup V. Left-right asymmetry specification in amphioxus: review and prospects. Int J Dev Biol , 2017, 61(10-11-12): 611-620.
doi: 10.1387/ijdb.170251vs pmid: 29319110 |
[54] |
Hirakow R, Kajita N. Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense : The gastrula . J Morphol , 1991, 207(1): 37-52.
doi: 10.1002/jmor.1052070106 pmid: 29865496 |
[55] | Yu XW, Ng CP, Habacher H, Roy S. Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet , 2008, 40(12): 1445-1453. |
[1] | 王文龙, 张春霞. 哺乳动物卵子与早期胚胎中全转录组poly(A)尾研究进展[J]. 遗传, 2023, 45(4): 273-278. |
[2] | 王梓川, 张嘉祺, 李磊. 哺乳动物早期胚胎发育的体外研究[J]. 遗传, 2022, 44(4): 269-274. |
[3] | 柯玉文,刘江. 动物早期胚胎发育中染色质结构的继承和重编程[J]. 遗传, 2018, 40(11): 977-987. |
[4] | 符梅, 徐克惠, 许文明. Dicer调节生殖功能的研究进展[J]. 遗传, 2016, 38(7): 612-622. |
[5] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[6] | 王慧, 李光, 王义权. 文昌鱼Hedgehog基因敲除和突变体表型分析[J]. 遗传, 2015, 37(10): 1036-1043. |
[7] | 李园园, 郭磊, 卢晟盛, 韩之明. 甲状旁腺激素样激素在胚胎发育中的作用[J]. 遗传, 2014, 36(9): 871-878. |
[8] | 葛少钦, 赵峥辉, 张雪倩, 郝媛. 精子表观遗传修饰及其在胚胎发育过程中的潜在作用[J]. 遗传, 2014, 36(5): 439-446. |
[9] | 秦伟,胡占英,佟军威,孟杰,游学甫,张靖溥. 三甲双酮对斑马鱼胚胎早期发育的影响[J]. 遗传, 2012, 34(9): 1165-1173. |
[10] | 杨晓丹,韩威,刘峰. DNA甲基化与脊椎动物胚胎发育[J]. 遗传, 2012, 34(9): 1108-1113. |
[11] | 赫崇波,朱宝,刘卫东,鲍相渤,李云峰,单忠国,李宏俊. 虾夷扇贝脂多糖诱导的肿瘤坏死因子LITAF基因的克隆及表达分析[J]. 遗传, 2012, 34(6): 736-741. |
[12] | 秦祖兴,黄高波,罗军,宁淑芳,卢晟盛. TSA和VPA处理对食蟹猴-猪异种体细胞核移植胚胎早期发育的影响[J]. 遗传, 2012, 34(3): 342-347. |
[13] | 孔庆然,朱江,黄波,郇延军,王峰,石永乾,刘仲凤,武美玲,刘忠华. TSA促进转基因猪体细胞核移植胚胎发育和外源基因表达[J]. 遗传, 2011, 33(7): 749-756. |
[14] | 李红岩,张士璀. 文昌鱼肝盲囊与脊椎动物肝脏起源[J]. 遗传, 2010, 32(5): 437-442. |
[15] | 马占福,杨冬,贺福初,姜颖. KRAB型锌指蛋白在高等脊椎动物胚胎发育和肿瘤发生、发展中的调控功能[J]. 遗传, 2010, 32(5): 431-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: