遗传 ›› 2025, Vol. 47 ›› Issue (1): 133-145.doi: 10.16288/j.yczz.24-166
• 综述 • 上一篇
收稿日期:
2024-06-08
修回日期:
2024-08-16
出版日期:
2025-01-20
发布日期:
2024-09-20
通讯作者:
屈延华,研究员,研究方向:鸟类适应性进化。E-mail: quyh@ioz.ac.cn作者简介:
宋刚,副研究员,研究方向:鸟类多样性研究。E-mail: songgang@ioz.ac.cn
基金资助:
Received:
2024-06-08
Revised:
2024-08-16
Published:
2025-01-20
Online:
2024-09-20
Supported by:
摘要:
作为世界上海拔最高、面积最大的高原,青藏高原独特的地理和气候条件对生物多样性产生了深远的影响。本文结合青藏高原地质、气候变化的背景综述了高原鸟类物种形成模式和遗传多样性特征。首先,青藏高原的隆升对鸟类产生了显著的隔离效应,推动与周边近缘物种的遗传分化;其次,青藏高原的隆升为鸟类提供了新的栖息地,促进了物种分化;再次,高原与邻近地区鸟类的区系交流,促进了物种的迁入、形成与扩散;最后,更新世冰期循环引起的环境变导致了鸟类的冰后期扩张和第二次接触,对鸟类的遗传分化产生了重要的影响。近期,多组学方法也日益广泛的应用在青藏高原鸟类生态适应演化研究中。未来的研究应更多关注地质、气候等因素在物种分化中的作用机制,加强多组学方法的应用,关注高原物种适应的生态学机制。青藏高原作为生物多样性保护的重要区域,在全球变化背景下,需要采取有效的保护措施以维护其生态系统的稳定性和可持续性。
宋刚, 屈延华. 青藏高原隆升与环境变化驱动鸟类的遗传分化与物种形成[J]. 遗传, 2025, 47(1): 133-145.
Gang Song, Yanhua Qu. Environmental changes and uplift of the Qinghai-Tibet Plateau drive genetic diversification and speciation of the birds[J]. Hereditas(Beijing), 2025, 47(1): 133-145.
表1
青藏高原鸟类遗传分化与多样性研究"
青藏高原鸟类的遗传分化与适应 | 物种 | 参考文献 |
---|---|---|
青藏高原隆升导致鸟类的隔离分化 | 鱗胸鷦鹛(Pnoepyga albiventer) 戈氏岩鹀(E. godlewskii) 橙斑翅柳莺(Phylloscopus pulcher) 藏鹀(Emberiza koslowi) | [ |
朱雀属(Carpodacus) | [ | |
长尾山雀科(Aegithalidae)雀莺属(Leptopoecile) | [ | |
喜鹊(Pica pica) | [ | |
大山雀(Parus major) | [ | |
家燕(Hirundo rustica) | [ | |
淡色沙燕(Riparia diluta) | [ | |
青藏高原隆升提供新的生态位 | 地山雀(Parus humilis) | [ |
雪雀属(Montifringilla)、地雀属(Pyrgilauda)、白腰雪雀属(Onychostruthus) | [ | |
青藏高原鸟类与邻近地区鸟类的区系交流 | 柳莺属(Phylloscopus)、鹟莺属(Seicercus) | [ |
长尾山雀科(Aegithalidae)、旋木雀科旋木雀属(Certhiidae, Certhia)、燕雀科灰雀属(Fringillidae, Pyrrhula)、山雀科灰冠山雀属(Paridae, Periparus)、柳莺科(Phylloscopidae)、戴菊科(Regulidae)、画眉科噪鹛属(Leiothrichidae Garrulax sensu lato) | [ | |
画眉科(97%种类) | [ | |
雀科(Passeridae)、鹀科(Emberizidae)、岩鹨科(Prunellidae) | [ | |
黑眉长尾山雀(Aegithalos bonvaloti)、银喉长尾山雀(A. fuliginosus) | [ | |
黄腹柳莺(Phylloscopus affinis) | [ | |
绿背山雀(Parus monticolus) | [ | |
棕头鸦雀(Paradoxornis webbianus) | [ | |
绿背山雀(Parus monticolus)、酒红朱雀(Carpodacus vinaceus )、栗臀䴓(Sitta nagaensis) | [ | |
青藏高原鸟类遗传适应机制 | 高海拔山雀和长尾山雀 | [ |
褐翅雪雀(Montifringilla adamsi)、棕颈雪雀(Pyrgilauda ruficollis)和白腰雪雀(Onychostruthus taczanowskii) | [ | |
树麻雀(Passer montanus) | [ | |
褐冠山雀(Lophophanes dichrous)、黑冠山雀(Periparus rubidiventris)、棕额长尾山雀(Aegithalos iouschistos) | [ | |
大山雀(Parus major) | [ | |
棕颈雪雀(Pyrgilauda ruficollis)、白腰雪雀(Onychostruthus taczanowskii) | [ |
[1] |
Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev Camb Philos Soc, 2015, 90(1): 236-253.
doi: 10.1111/brv.12107 pmid: 24784793 |
[2] | Spicer RA, Su T, Valdes PJ, Farnsworth A, Wu FX, Shi G, Spicer TEV, Zhou ZK. Why 'the uplift of the Tibetan Plateau' is a myth. Natl Sci Rev, 2020, 8(1): nwaa091. |
[3] | Yao TD, Pu JC, Lu AX, Wang YQ, Yu WS. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res, 2007, 39(4): 642-650. |
[4] | Zheng D. The system of physico-geographical regions of the Qinghai-Xizang (Tibet) plateau. Sci China Earth Sci, 1996, 39(4): 410-417. |
[5] | Lei FM, Song G, Cai TL, Qu YH, Jia CX, Zhao YF, Zhang DZ. Research progress and prospect on biogeography of birds in China. Chinese J Zool, 2021, 56(2): 265-289. |
雷富民, 宋刚, 蔡天龙, 屈延华, 贾陈喜, 赵义方, 张德志. 中国鸟类生物地理学研究回顾与展望. 动物学杂志, 2021, 56(2): 265-289. | |
[6] | Martens J. Vertical distribution of Palearctic and Oriental faunal components in the Nepal Himalayas. Erdwissenschaftl Forsch, 1984, 18(1): 323-336. |
[7] | Martens J. Fauna-Himalayan patterns of diversity. In: Miehe G, Pendry C, Chaudhary R, eds. Nepal: An Introduction to the Natural History, Ecology and Human Environment of the Himalayas. Edinburgh, UK: Royal Botanic Garden, 2015, 211-249. |
[8] | Päckert M, Martens J, Sun YH, Tietze T. Evolutionary history of passerine birds (Aves: Passeriformes) from the Qinghai-Tibetan Plateau: from a pre-Quarternary perspective to an integrative biodiversity assessment. J Ornithol, 2015, 156(S1): 355-365. |
[9] | Päckert M, Sun YH, Strutzenberger P, Valchuk O, Tietze T, Martens J. Phylogenetic relationships of endemic bunting species (Aves, Passeriformes, Emberizidae, Emberiza koslowi) from the eastern Qinghai-Tibet Plateau. Vertebr Zool, 2015, 65(1): 135-150. |
[10] | Tietze DT, Päckert M, Martens J, Lehmann H, Sun YH. Complete phylogeny and historical biogeography of true rosefinches (Aves: Carpodacus). Zool J Linn Soc, 2013, 169(1): 215-234. |
[11] | Päckert M, Martens J, Sun YH, Severinghaus LL, Nazarenko AA, Ting J, Töepfer T, Tietze DT. Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes). J Biogeogr, 2012, 39(3): 556-573. |
[12] |
Päckert M, Martens J, Sun YH. Phylogeny of long-tailed tits and allies inferred from mitochondrial and nuclear markers (Aves: Passeriformes, Aegithalidae). Mol Phylogenet Evol, 2010, 55(3): 952-967.
doi: 10.1016/j.ympev.2010.01.024 pmid: 20102744 |
[13] | Voelker G. Repeated vicariance of Eurasian songbird lineages since the Late Miocene. J Biogeogr, 2010, 37(7): 1251-1261. |
[14] | Song G, Zhang RY, Alström P, Irestedt M, Cai TL, Qu YH, Ericson PGP, Fjeldså J, Lei FM. Complete taxon sampling of the avian genus Pica (magpies) reveals ancient relictual populations and synchronous Late-Pleistocene demographic expansion across the Northern Hemisphere. J Avian Biol, 2018, 49(2): e01612. |
[15] | Song G, Zhang RY, Machado-Stredel F, Alström P, Johansson US, Irestedt M, Mays HL, McKay BD, Nishiumi I, Cheng YL, Qu YH, Ericson PGP, Fjeldså J, Peterson AT, Lei FM. Great journey of Great Tits (Parus major group): origin, diversification and historical demographics of a broadly-distributed bird lineage. J Biogeogr, 2020, 47(7): 1585-1598. |
[16] | Tang QD, Burri R, Liu Y, Suh A, Sundev G, Heckel G, Schweizer M. Seasonal migration patterns and the maintenance of evolutionary diversity in a cryptic bird radiation. Mol Ecol, 2022, 31(2): 632-645. |
[17] | Scordato ESC, Smith CCR, Semenov GA, Liu Y, Wilkins MR, Liang W, Rubtsov A, Sundev G, Koyama K, Turbek SP, Wunder MB, Stricker CA, Safran RJ. Migratory divides coincide with reproductive barriers across replicated avian hybrid zones above the Tibetan Plateau. Ecol Let, 2020, 23(2): 231-241. |
[18] | James HF, Ericson PGP, Slika B, Lei FM, Gill FB, Olson SL. Pseudopodoces humilis, a misclassified terrestrial tit (Paridae) of the Tibetan Plateau: evolutionary consequences of shifting adaptive zones. Ibis, 2002, 145(2): 185-202. |
[19] |
Cheng YL, Miller MJ, Zhang DZ, Song G, Jia CX, Qu YH, Lei FM. Comparative genomics reveals evolution of a beak morphology locus in a high-altitude songbird. Mol Biol Evol, 2020, 37(10): 2983-2988.
doi: 10.1093/molbev/msaa157 pmid: 32592485 |
[20] |
Qu YH, Zhao HW, Han NJ, Zhou GY, Song G, Gao B, Tian SL, Zhang JB, Zhang RY, Meng XH, Zhang Y, Zhang Y, Zhu XJ, Wang WJ, Lambert D, Ericson PGP, Subramanian S, Yeung C, Zhu HM, Jiang Z, Li RQ, Lei FM. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun, 2013, 4: 2071.
doi: 10.1038/ncomms3071 pmid: 23817352 |
[21] | Qu YH, Ericson PGP, Lei FM, Gebauer A, Kaiser M, Helbig AJ. Molecular phylogenetic relationship of snow finch complex (genera Montifringilla, Pyrgilauda, and Onychostruthus) from the Tibetan plateau. Mol Phylogenet Evol, 2006, 40(1): 218-226. |
[22] | Qu YH, Chen CH, Chen XM, Hao Y, She HS, Wang MX, Ericson PGP, Lin HY, Cai TL, Song G, Jia CX, Chen CY, Zhang HL, Li J, Liang LP, Wu TY, Zhao JY, Gao Q, Zhang GJ, Zhai WW, Zhang C, Zhang YE, Lei FM. The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau. Proc Natl Acad Sci USA, 2021, 118(13): e2012398118. |
[23] | Cai TL, Shao SM, Kennedy JD, Alström P, Moyle RG, Qu YH, Lei FM, Fjeldså J. The role of evolutionary time, diversification rates and dispersal in determining the global diversity of a large radiation of passerine birds. J Biogeogr, 2020, 47(7): 1612-1625. |
[24] | Johansson US, Alström P, Olsson U, Ericson PGP, Sundberg P, Price TD. Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution, 2007, 61(2): 324-333. |
[25] | Zang WQ, Jiang ZY, Ericson PGP, Song G, Drovetski SV, Saitoh T, Lei FM, Qu YH. Evolutionary relationships of mitogenomes in a recently radiated old world avian family. Avian Res, 2023, 14(1): 100097. |
[26] |
Päckert M, Favre A, Schnitzler J, Martens J, Sun YH, Tietze DT, Hailer F, Michalak I, Strutzenberger P. "Into and Out of" the Qinghai-Tibet Plateau and the Himalayas: Centers of origin and diversification across five clades of Eurasian montane and alpine passerine birds. Ecol Evol, 2020, 10(17): 9283-9300.
doi: 10.1002/ece3.6615 pmid: 32953061 |
[27] |
Zhang DZ, Song G, Gao B, Cheng YL, Qu YH, Wu SY, Shao SM, Wu YJ, Alström P, Lei FM. Genomic differentiation and patterns of gene flow between two long-tailed tit species (Aegithalos). Mol Ecol, 2017, 26(23): 6654-6665.
doi: 10.1111/mec.14383 pmid: 29055167 |
[28] | Zhang DZ, Tang LF, Cheng YL, Hao Y, Xiong Y, Song G, Qu YH, Rheindt FE, Alström P, Jia CX, Lei FM. “Ghost Introgression” as a cause of deep mitochondrial divergence in a bird species complex. Mol Biol Evol, 2019, 36(11): 2375-2386. |
[29] |
Jiang ZY, Zang WQ, Ericson PGP, Song G, Wu SY, Feng SH, Drovetski SV, Liu G, Zhang DZ, Saitoh T, Alström P, Edwards SV, Lei FM, Qu YH. Gene flow and an anomaly zone complicate phylogenomic inference in a rapidly radiated avian family (Prunellidae). BMC Biol, 2024, 22(1): 49.
doi: 10.1186/s12915-024-01848-7 pmid: 38413944 |
[30] |
Qu YH, Ericson PGP, Quan Q, Song G, Zhang RY, Gao B, Lei FM. Long-term isolation and stability explain high genetic diversity in the Eastern Himalaya. Mol Ecol, 2014, 23(3): 705-720.
pmid: 24600707 |
[31] | Wang WJ, McKay BD, Dai CY, Zhao N, Zhang RY, Qu YH, Song G, Li SH, Liang W, Yang XJ, Pasquet E, Lei FM. Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus). J Biogeogr, 2013, 40(6): 1156-1169. |
[32] | Jiang ZY, Song G, Luo X, Zhang DZ, Lei FM, Qu YH. Recurrent selection and reduction in recombination shape the genomic landscape of divergence across multiple population pairs of Green-backed Tit. Evol Let, 2023, 7(2): 99-111. |
[33] | Lei FM, Qu YH, Song G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Cur Zool, 2014, 60(2): 149-161. |
[34] |
Qu YH, Lei FM. Comparative phylogeography of two endemic birds of the Tibetan Plateau, the White-rumped Snow finch (Onychostruthus taczanowskii) and the Hume's Ground Tit (Pseudopodoces humilis). Mol Phylogenet Evol, 2009, 51(2): 312-326.
doi: 10.1016/j.ympev.2009.01.013 pmid: 19405199 |
[35] | Jiang ZY, Gao B, Lei FM, Qu YH. Population genomics reveals that refugial isolation and habitat change lead to incipient speciation in the Ground Tit. Zool Scr, 2019, 48(3): 277-288. |
[36] |
Gu LY, Liu Y, Que PJ, Zhang ZW. Quaternary climate and environmental changes have shaped genetic differentiation in a Chinese pheasant endemic to the eastern margin of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 2013, 67(1): 129-139.
doi: 10.1016/j.ympev.2012.12.013 pmid: 23280367 |
[37] |
An B, Zhang LX, Browne S, Liu NF, Ruan LZ, Song S. Phylogeography of Tibetan snowcock (Tetraogallus tibetanus) in Qinghai-Tibetan Plateau. Mol Phylogenet Evol, 2009, 50(3): 526-533.
doi: 10.1016/j.ympev.2008.12.003 pmid: 19111936 |
[38] | Dong F, Huang CM, Yang XJ. Secondary contact after allopatric divergence explains avian speciation and high species diversity in the Himalayan-Hengduan Mountains. Mol Phylogenet Evol, 2020, 143: 106671. |
[39] |
Qu YH, Zhang RY, Quan Q, Song G, Li SH, Lei FM. Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the Vinous-throated parrotbill (Paradoxornis webbianus). Mol Ecol, 2012, 21(24): 6117-6133.
doi: 10.1111/mec.12080 pmid: 23095021 |
[40] | Wu HC, Lin RC, Hung HY, Yeh CF, Chu JH, Yang XJ, Yao CJ, Zou FS, Yao CT, Li SH, Lei FM. Molecular and morphological evidences reveal a cryptic species in the Vinaceous Rosefinch Carpodacus vinaceus (Fringillidae; Aves). Zool Scr, 2011, 40(5): 468-478. |
[41] |
Zhao M, Chang YB, Kimball RT, Zhao J, Lei FM, Qu YH. Pleistocene glaciation explains the disjunct distribution of the Chestnut-vented Nuthatch (Aves, Sittidae). Zool Scr, 2019, 48(1): 33-45.
doi: 10.1111/zsc.12327 |
[42] | Qu YH, Song G, Gao B, Quan Q, Ericson PGP, Lei FM. The influence of geological events on the endemism of East Asian birds studied through comparative phylogeography. J Biogeogr, 2015, 42(1): 179-192. |
[43] |
Zhu XJ, Guan YY, Signore AV, Natarajan C, DuBay SG, Cheng YL, Han NJ, Song G, Qu YH, Moriyama H, Hoffmann FG, Fago A, Lei FM, Storz JF. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc Natl Acad Sci USA, 2018, 115(8): 1865-1870.
doi: 10.1073/pnas.1720487115 pmid: 29432191 |
[44] | Qu YH, Chen XH, Xiong Y, She HS, Zhang EY, Cheng YL, DuBay S, Li DM, Ericson PGP, Hao Y, Wang HY, Zhao HF, Song H, Zhang HL, Yang T, Zhang C, Liang LP, Wu TY, Zhao JY, Gao Q, Zhai WW, Lei FM. Rapid phenotypic evolution with shallow genomic differentiation during early stages of high elevation adaptation in Eurasian Tree Sparrows. Nat Sci Rev, 2020, 7(1): 113-127. |
[45] |
Hao Y, Xiong Y, Cheng YL, Song G, Jia CX, Qu YH, Lei FM. Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proc Natl Acad Sci USA, 2019, 116(24): 11851-11856.
doi: 10.1073/pnas.1819657116 pmid: 31127049 |
[46] | Cheng YL, Miller MJ, Zhang DZ, Xiong Y, Hao Y, Jia CX, Cai TL, Li SH, Johansson US, Liu Y, Chang YB, Song G, Qu YH, Lei FM. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. Proc Natl Acad Sci USA, 2021, 118(50): e2023918118. |
[47] | Qu YH, Tian SL, Han NJ, Zhao HW, Gao B, Fu J, Cheng YL, Song G, Ericson PGP, Zhang YE, Wang DW, Quan Q, Jiang Z, Li RQ, Lei FM. Genetic responses to seasonal variation in altitudinal stress: whole-genome resequencing of great tit in eastern Himalayas. Sci Rep, 2015, |
[48] | She HS, Jiang ZY, Song G, Ericson PGP, Luo X, Shao SM, Lei FM, Qu YH. Quantifying adaptive divergence of the snowfinches in a common landscape. Divers Distrib, 2022, 28(12): 2579-2592. |
[49] | Guo DL, Sun JQ, Yang K, Pepin N, Xu YM, Xu ZQ, Wang HJ. Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snow-albedo feedback. Int J Climatol, 2019, 40(3): 1644-1655. |
[50] | Yan Q, Owen LA, Wang HJ, Zhang ZS. Climate constraints on glaciation over High-Mountain Asia during the last glacial maximum. Geophys Res Lett, 2018, 45(17): 9024-9033. |
[51] | Chen YL, Jiang ZY, Fan P, Ericson PGP, Song G, Luo X, Lei FM, Qu YH. The combination of genomic offset and niche modelling provides insights into climate change- driven vulnerability. Nat Commun, 2022, 13(1): 4821. |
[52] | Zeng XH, Lu X. Interspecific dominance and asymmetric competition with respect to nesting habitats between two snowfinch species in a high-altitude extreme environment. Ecol Res, 2009, 24(3): 607-616. |
[53] | Zhang H, Li WJ, Hu YP, Zhang YM. Opposite companion effect on flight initiation distance in sympatric species: plateau pika (Ochotona curzoniae) and White-rumped Snowfinch (Onychostruthus taczanowskii). Can J Zool, 2016, 94(2): 109-114. |
[54] | Chen YL, Ge DY, Ericson PGP, Song G, Wen ZX, Luo X, Yang QS, Lei FM, Qu YH. Alpine burrow-sharing mammals and birds show similar population-level climate change risks. Nat Clim Change, 2023, 13(9): 990-996. |
[55] |
An X, Mao LY, Wang YJ, Xu QQ, Liu X, Zhang SZ, Qiao ZL, Li BW, Li F, Kuang ZR, Wan N, Liang XL, Duan QJ, Feng ZL, Yang XJ, Liu SY, Nevo E, Liu JQ, Storz JF, Li KX. Genomic structural variation is associated with hypoxia adaptation in high-altitude zokors. Nat Ecol Evol, 2024, 8(2): 339-351.
doi: 10.1038/s41559-023-02275-7 pmid: 38195998 |
[56] | Liu XF, Liu WY, Lenstra JA, Zheng ZY, Wu XY, Yang J, Li BW, Yang YZ, Qiu Q, Liu HY, Li KX, Liang CN, Guo X, Ma XM, Abbott RJ, Kang MH, Yan P, Liu JQ. Evolutionary origin of genomic structural variations in domestic yaks. Nat Commun, 2023, 14(1): 5617. |
[1] | 吴宏, 章誉兴, 于黎. 动物物种形成研究进展[J]. 遗传, 2025, 47(1): 58-70. |
[2] | 王则夫, 刘建全. 基因组时代的物种形成研究[J]. 遗传, 2025, 47(1): 71-100. |
[3] | 王梦燏, 周成浩, 薛倩, 殷建玫, 蒋一秀, 张会永, 李国辉, 韩威. “酉芯一号”在地方鸡遗传多样性和结构分析中的应用效力研究[J]. 遗传, 2024, 46(8): 640-648. |
[4] | 马钧, 樊安平, 王武生, 张金川, 江晓军, 马瑞军, 贾社强, 刘飞, 雷初朝, 黄永震. 全基因组重测序解析秦川牛保种群遗传多样性和遗传结构[J]. 遗传, 2023, 45(7): 602-616. |
[5] | 王建梅, 刘贺贺, 马盛超, 席洋, 张荣萍, 徐倩, 李亮. 鸟类羽色性别二态性形成机制研究进展[J]. 遗传, 2022, 44(6): 491-500. |
[6] | 寇洁, 李严, 王鹏, 刘红, 刘佳文, 王涓, 王也, 张亮, 沈富军. 大熊猫遗传多样性评估的微卫星分型体系优化[J]. 遗传, 2022, 44(3): 253-266. |
[7] | 徐志伟, 魏云林, 季秀玲. 假单胞菌噬菌体基因组学研究进展[J]. 遗传, 2020, 42(8): 752-759. |
[8] | 郑建敏,罗江陶,万洪深,李式昭,杨漫宇,李俊,杨恩年,蒋云,刘于斌,王相权,蒲宗君. 四川省小麦育成品种系谱分析及发展进程[J]. 遗传, 2019, 41(7): 599-610. |
[9] | 赵永欣, 李孟华, 赵要风. 中国绵羊起源、进化和遗传多样性研究进展[J]. 遗传, 2017, 39(11): 958-973. |
[10] | 弓弦,张超,伊利亚斯·艾萨,时瑛,杨雪唯,努尔斯曼古丽奥斯曼,关亚群,徐书华. 2型糖尿病易感候选基因在世界不同人群中的多样性比较分析[J]. 遗传, 2016, 38(6): 543-559. |
[11] | 黄益敏 夏梦颖 黄石. 遗传多样性上限假说所揭示的进化历程[J]. 遗传, 2013, 35(5): 599-606. |
[12] | 温莹 逯晓萍 任锐 米福贵 韩平安 薛春雷. 高丹草EST-SSR标记的开发及其遗传多样性[J]. 遗传, 2013, 35(2): 225-232. |
[13] | 李铎,柴志欣,姬秋梅,张成福,信金伟. 西藏牦牛微卫星DNA的遗传多样性[J]. 遗传, 2013, 35(2): 175-184. |
[14] | 马志杰,钟金城,韩建林,徐惊涛,刘仲娜,白文林. 牦牛分子遗传多样性研究进展[J]. 遗传, 2013, 35(2): 151-160. |
[15] | 傅建军,李家乐,沈玉帮,王荣泉,宣云峰,徐晓雁,陈勇. 草鱼野生群体遗传变异的微卫星分析[J]. 遗传, 2013, 35(2): 192-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: