[1] Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Sim-mons HA, Kemnitz JW, Weindruch R. Dietary restriction delays disease onset and mortality in rhesus monkeys. Science, 2009, 325(5937): 201-204.[2] Mattson MP, Wan RQ. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem, 2005, 16(3): 129-137.[3] Klebanov S. Can short-term dietary restriction and fasting have a long-term anticarcinogenic effect? Interdiscip Top Gerontol, 2007, 35(1): 176-192.[4] Wang J, Ho L, Qin W, Rocher AB, Seror I, Humala N, Maniar K, Dolios G, Wang R, Hof PR, Pasinetti GM. Ca-loric restriction attenuates β-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J, 2005, 19(6): 659-661.[5] Anson RM, Guo ZH, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP. Inter-mittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA, 2003, 100(10): 6216-6220.[6] Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell, 2007, 6(1): 95-110.[7] Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol, 2007, 17(19): 1646-1656.[8] Li Y, Xu W, McBurney MW, Longo VD. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab, 2008, 8(1): 38-48.[9] Honjoh S, Yamamoto T, Uno M, Nishida E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature, 2009, 457(7230): 726-730.[10] Arum O, Bonkowski MS, Rocha JS, Bartke A. The growth hormone receptor gene-disrupted mouse fails to respond to an intermittent fasting diet. Aging Cell, 2009, 8(6): 756-760.[11] McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition, 1989, 5(3): 155-171.[12] Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 2000, 289(5487): 2126-2128.[13] Smith ED, Kennedy BK, Kaeberlein M. Genome-wide identification of conserved longevity genes in yeast and worms. Mech Ageing Dev, 2007, 128(1): 106-111.[14] Easlon E, Tsang F, Dilova I, Wang C, Lu SP, Skinner C, Lin SJ. The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J Biol Chem, 2007, 282(9): 6161-6171.[15] Kaeberlein M, Powers RW III, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 2005, 310(5751): 1193-1196.[16] Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD. Sir2 blocks extreme life-span ex-tension. Cell, 2005, 123(4): 655-667.[17] Bishop NA, Guarente L. Two neurons mediate dietrestriction-induced longevity in C. elegans. Nature, 2007, 447(7144): 545-549.[18] Smith DL Jr, Li CH, Matecic M, Maqani N, Bryk M, Smith JS. Calorie restriction effects on silencing and recombination at the yeast rDNA. Aging Cell, 2009, 8(6): 633-642.[19] Liu BD, Larsson L, Caballero A, Hao XX, Öling D, Grantham J, Nyström T. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell, 2010, 140(2): 257-267.[20] Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science, 2005, 310(5754): 1641.[21] Viswanathan M, Kim SK, Berdichevsky A, GuarenteL. A role for SIR-2.1 regulation of ER stress response genes in deter-mining C. elegans life span. Dev Cell, 2005, 9(5): 605-615.[22] Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009, 460(7253): 392-395.[23] Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab, 2010, 11(1): 35-46.[24] Selman C, Tullet JMA, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson ICA, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science, 2009, 326(5949): 140-144.[25] Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activ-ity in Drosophila. Cell, 2009, 139(1): 149-160.[26] Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev, 2004, 18(24): 3004-3009.[27] Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE, Semenchenko AV. Met-formin slows down aging and extends life span of female SHR mice. Cell Cycle, 2008, 7(17): 2769-2773.[28] Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell, 2009, 8(2): 113-127.[29] Lunetta KL, D’Agostino RB Sr, Karassik D, Benjamin EJ, Guo CY, Govindaraju R, Kiel DP, Kelly-Hayes M, Mas-saro JM, Pencina MJ, Seshadri S, Murabito JM. Genetic correlates of longevity and selected age-related pheno-types: a genome-wide association study in the Framingham Study. BMC Med Genet, 2007, 8(Suppl. 1): S13.[30] Kenyon C. The plasticity of aging: insights from long- lived mutants. Cell, 2005, 120(4): 449-460.[31] Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L. Dietary restriction in long-lived dwarf flies. Science, 2002, 296(5566): 319.[32] Libert S, Zwiener J, Chu XW, van Voorhies W, Roman G, Pletcher SD. Regulation of Drosophila life span by olfaction and food-derived odors. Science, 2007, 315(5815): 1133-1137.[33] Bargmann CI, Horvitz HR. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 1991, 7(5): 729-742.[34] Bargmann CI, Horvitz HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science, 1991, 251(4998): 1243-1246.[35] Bishop NA, Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet, 2007, 8(11): 835-844.[36] Flatt T. Ageing: Diet and longevity in the balance. Nature, 2009, 462(7276): 989-990.[37] Grandison RC, Piper MD, Partridge L. Amino-acid imbalance explains extension of lifespan by dietary restric-tion in Drosophila. Nature, 2009, 462(7276): 1061-1064. |