遗传 ›› 2012, Vol. 34 ›› Issue (9): 1097-1107.doi: 10.3724/SP.J.1005.2012.01097
胡雨, 姚纪花
收稿日期:
2012-02-25
修回日期:
2012-03-28
出版日期:
2012-09-20
发布日期:
2012-09-25
通讯作者:
姚纪花
E-mail:yaojh@fudan.edu.cn
基金资助:
国家重点基础研究发展计划(973计划)项目(编号:2011CB943804)资助
HU Yu, YAO Ji-Hua
Received:
2012-02-25
Revised:
2012-03-28
Online:
2012-09-20
Published:
2012-09-25
摘要: 哺乳动物多能性因子, 主要包括Pou5f1/Oct4、Sox2、Klf4、Nanog等转录因子, 不仅能够维持胚胎干细胞的未分化状态, 同时也参与使分化细胞重编程回多能性状态的过程。目前对脊椎动物多能性因子在体(in vivo)功能研究报道极少。斑马鱼是研究脊椎动物早期发育分化的理想模型, 它能够为多能性相关因子的功能研究提供在体环境, 因而可以更准确地了解多能性因子的作用信息。近年来, 已在斑马鱼中发现了多种哺乳动物多能性因子的同源基因, 如oct4、nanog等。文章主要介绍了斑马鱼中多能性因子的相关研究进展, 并与其它动物中的研究作一比较。
胡雨,姚纪花. 斑马鱼多能性因子的研究进展[J]. 遗传, 2012, 34(9): 1097-1107.
HU Yu, YAO Ji-Hua. Progress on pluripotency factors in zebrafish[J]. HEREDITAS, 2012, 34(9): 1097-1107.
[1] Tavernier G, Wolfrum K, Demeester J, de Smedt SC, Ad-jaye J, Rejman J. Activation of pluripotency-associated genes in mouse embryonic ?broblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials, 2012, 33(2): 412-417.[2] Greber B, Wu G, Bernemann C, Joo JY, Han DW, Ko K, Tapia N, Sabour D, Sterneckert J, Tesar P, Schöler HR. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 2010, 6(3): 215-226.[3] Rao S, Zhen S, Roumiantsev S, McDonald LT, Yuan GC, Orkin SH. Differential roles of sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 2010, 30(22): 5364-5380.[4] Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol, 2006, 8(10): 1114- 1134.[5] Hong N, Li Z, Hong Y. Fish stem cell cultures. Int J Biol Sci, 2011, 7(4): 392-402.[6] Christen B, Robles V, Raya M, Paramonov I, Izpisúa Belmonte JC. Regeneration and reprogramming compared. BMC Biol, 2010, 8(1): 5.[7] Abrams EW, Mullins MC. Early zebrafish development: It’s in the maternal genes. Curr Opin Genet Dev, 2009, 19(4): 396-403.[8] Furutani-Seiki M, Wittbrodt J. Medaka and zebrafish, an evolutionary twin study. Mech Dev, 2004, 121(7-8): 629-637.[9] Trede NS, Langenau DM, Traver D, Look AT, Zon LI. The use of zebrafish to understand immunity. Immunity, 2004, 20(4): 367-379.[10] Sánchez-Sánchez AV, Camp E, Mullor JL. Fishing pluri-potency mechanisms in vivo. Int J Biol Sci, 2011, 7(4): 410-417.[11] Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res, 2011, 21(8): 1328-1338.[12] Robles V, Martí M, Izpisua Belmonte JC. Study of pluri-potency markers in zebrafish embryos and transient em-bryonic stem cell cultures. Zebrafish, 2011, 8(2): 57-63.[13] Schöler HR. Octamania: The POU factors in murine development. Trends Genet, 1991, 7(10): 323-329.[14] Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95(3): 379-391.[15] Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell, 2010, 6(4): 382-395.[16] Pan GJ, Chang ZY, Schöler HR, Pei D. Stem cell pluripo-tency and transcription factor Oct4. Cell Res, 2002, 12(5-6): 321-329.[17] Onichtchouk D, Geier F, Polok B, Messerschmidt DM, Mössner R, Wendik B, Taylor V, Timmer J, Driever W. Oct4/Pou5f1 controls differentiation timing in early ze-brafish embryo. Dev Biol, 2010, 344(1): 415-417.[18] Chen T, Du J, Lu G. Cell growth arrest and apoptosis in-duced by Oct4 or Nanog knockdown in mouse embryonic stem cells: a possible role of Trp53. Mol Biol Rep, 2012, 39(2): 1855-1861.[19] Lunde K, Belting HG, Driever W. Zebrafish pou5f1/pou2, homolog of mammalian Oct4, functions in the endoderm specification cascade. Curr Biol, 2004, 14(1): 48-55.[20] Onichtchouk D, Geier F, Polok B, Messerschmidt DM, Mössner R, Wendik B, Song S, Taylor V, Timmer J, Driever W. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol, 2010, 6: 354.[21] Parvin MS, Okuyama N, Inoue F, Islam ME, Kawakami A, Takeda H, Yamasu K. Autoregulatory loop and retinoic acid repression regulate pou2/pou5f1 gene expression in the zebrafish embryonic brain. Dev Dyn, 2008, 237(5): 1373-1388.[22] Sánchez-Sánchez AV, Camp E, García-España A, Leal-Tassias A, Mullor JL. Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads. Dev Dyn, 2010, 239(2): 672-679.[23] Reim G, Brand M. Spielohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during ze-brafish early neural development. Development, 2002, 129(4): 917-933.[24] Belting HG, Wendik B, Lunde K, Leichsenring M, Mössner R, Driever W, Onichtchouk D. Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol, 2011, 356(2): 323-336.[25] van den Berg DL, Snoek T, Mullin NP, Yates A, Bezsta-rosti K, Demmers J, Chambers I, Poot RA. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell, 2010, 6(4): 369-381.[26] Theunissen TW, Silva JC. Switching on pluripotency: a perspective on the biological requirement of Nanog. Phil. Philos Trans R Soc Lond B Biol Sci, 2011, 366(1575): 2222-2229.[27] Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113(5): 643-655.[28] Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113(5): 631-642.[29] Theunissen TW, Costa Y, Radzisheuskaya A, van Oosten AL, Lavial F, Pain B, Castro LF, Silva JC. Reprogram-ming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development, 2011, 138(22): 4853-4865.[30] Marandel L, Labbe C, Bobe J, Le Bail PY. Nanog 5'-upstream sequence, DNA methylation, and expression in gametes and early embryo reveal striking differences between teleosts and mammals. Gene, 2012, 492(1): 130-137.[31] Schuff M, Siegel D, Philipp M, Bundschu K, Heymann N, Donow C, Knöchel W. Characterization of Danio rerio Nanog and functional comparison to Xenopus Vents. Stem Cells Dev, 2011, 21(8): 1225-1238.[32] Jauch R, Ng CK, Saikatendu KS, Stevens RC, Kolatkar PR. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog. J Mol Biol, 2008, 376(3): 758-770.[33] Das S, Jena S, Levasseur DN. Alternative splicing pro-duces Nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J Biol Chem, 2011, 286(49): 42690-42703.[34] Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A. Nanog is the gateway to the pluripotent ground state. Cell, 2009, 138(4): 722-737.[35] Cavaleri F, Schöler HR. Nanog: A new recruit to embry-onic stem cell orchestra. Cell, 2003, 113(5): 551-552.[36] Wu Q, Chen X, Zhang J, Loh YH, Low TY, Zhang W, Zhang W, Sze SK, Lim B, Ng HH. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem, 2006, 281(34): 24090-24094.[37] Zhang L, Rayner S, Katoku-Kikyo N, Romanova L, Kikyo N. Successful co-immunoprecipitation of Oct4 and Nanog using cross-linking. Biochem Biophys Res Com-mun, 2007, 361(3): 611-614.[38] Kim CG, Chung IY, Lim Y, Lee YH, Shin SY. A Tcf/Lef element within the enhancer region of the human NANOG gene plays a role in promoter activation. Biochem Biophys Res Commun, 2011, 410(3): 637-642.[39] Karantzali E, Lekakis V, Ioannou M, Hadjimichael C, Pa-pamatheakis J, Kretsovali A. Sall1 regulates embryonic stem cell differentiation in association with Nanog. J Biol Chem, 2011, 286(2): 1037-1045.[40] Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell, 2008, 2(3): 241-251.[41] Camp E, Sánchez-Sánchez AV, García-España A, Desalle R, Odqvist L, Enrique O'Connor J, Mullor JL. Nanog regulates proliferation during early fish development. Stem Cells, 2009, 27(9): 2081-2091.[42] Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A. Nanog safeguards pluripotency and mediates germline development. Nature, 2007, 450(7173): 1230-1234.[43] Tian J, Chng SC, Ong JX, Reversade B. Cloning and functional study of Nanog in zebrafish. Dev Biol, 2011, 356(1): 234.[44] Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T. Nanog expression in mouse germ cell development. Gene Expr Patterns, 2005, 5(5): 639-646.[45] Wang D, Manali D, Wang T, Bhat N, Hong N, Li Z, Wang L, Yan Y, Liu R, Hong Y. Identification of pluripotency genes in the fish medaka. Int J Biol Sci, 2011, 7(4): 440- 451.[46] Song A, Patel A, Thamatrakoln K, Liu C, Feng D, Clay-berger C, Krensky AM. Functional domains and DNA- binding sequences of RFLAT-1/KLF13, a Kruppel-like transcription factor of activated T lymphocytes. J Biol Chem, 2002, 277(33): 30055-30065.[47] 孙雪萍, 曹鸿国, 张运海, 刘亚. Klf4的功能研究进展. 生命科学, 2009, 21(3): 383-387.[48] Chen Z, Couble ML, Mouterfi N, Magloire H, Chen Z, Bleicher F. Spatial and temporal expression of KLF4 and KLF5 during murine tooth development. Arch Oral Biol, 2009, 54(5): 403-411.[49] Behr R, Kaestner KH. Developmental and cell type-specific expression of the zinc finger transcription factor Kruppel-like factor 4 (Klf4) in postnatal mouse testis. Mech Dev, 2002, 115(1-2): 167-169.[50] Katz JP, Perreault N, Goldstein BG, Actman L, McNally SR, Silberg DG, Furth EE, Kaestner KH. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroen-terology, 2005, 128(4): 935-945.[51] Flandez M, Guilmeau S, Blache P, Augenlicht LH. KLF4 regulation in intestinal epithelial cell maturation. Exp Cell Res, 2008, 314(20): 3712-3723.[52] Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, García-Cardeña G. Defining the regulation of KLF4 expression and its downstream transcriptional tar-gets in vascular endothelial cells. Biochem Biophys Res Commun, 2010, 391(1): 984-989.[53] An J, Golech S, Klaewsongkram J, Zhang Y, Subedi K, Huston GE, Wood WH 3rd, Wersto RP, Becker KG, Swain SL, Weng N. Kruppel-like factor 4 (KLF4) directly regu-lates proliferation in thymocyte development and IL-17 expression during Th17 differentiation. FASEB J, 2011, 25(10): 3634-3645.[54] King KE, Iyemere VP, Weissberg PL, Shanahan CM. Kruppel-like Factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem, 2003, 278(13): 11661-11669.[55] Kaushik DK, Gupta M, Das S, Basu A. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation. J Neuroinflammation, 2010, 7(1): 68.[56] Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL. KLF family members regulate intrinsic axon regeneration ability. Science, 2009, 326 (5950): 298-301.[57] Godmann M, Gashaw I, Eildermann K, Schweyer S, Bergmann M, Skotheim RI, Behr R. The pluripotency transcription factor Krüppel-like factor 4 is strongly ex-pressed in intratubular germ cell neoplasia unclassified and seminoma. Mol Hum Reprod, 2009, 15(8): 479-488.[58] Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun, 2009, 383(2): 157-162.[59] Zhang P, Andrianakos R, Yang Y, Liu C, Lu W. Kruppel-like Factor 4 (Klf4) prevents embryonic stem(ES) cell differentiation by regulating Nanog gene expression. J Biol Chem, 2010, 285(12): 9180-9189.[60] Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 2009, 137(4): 647-658.[61] Nakatake Y, Fukui N, Iwamatsu Y, Masui S, Takahashi K, Yagi R, Yagi K, Miyazaki J, Matoba R, Ko MS, Niwa H. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol, 2006, 26(20): 7772-7782.[62] Chan KK, Zhang J, Chia NY, Chan YS, Sim HS, Tan KS, Oh SK, Ng HH, Choo AB. KLF4 and PBX1 directly regulate NANOG expression in human embryonic stem cells. Stem Cells, 2009, 27(9): 2114-2125.[63] Hester ME, Song S, Miranda CJ, Eagle A, Schwartz PH, Kaspar BK. Two factor reprogramming of human neural stem cells into pluripotency. PLoS One, 2009, 4(9): e7044.[64] Wei Z, Yang Y, Zhang P, Andrianakos R, Hasegawa K, Lyu J, Chen X, Bai G, Liu C, Pera M, Lu W. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells, 2009, 27(12): 2969-2978.[65] Kim MO, Kim SH, Cho YY, Nadas J, Jeong CH, Yao K, Kim DJ, Yu DH, Keum YS, Lee KY, Huang Z, Bode AM, Dong Z. ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4. Nat Struct Mol Biol, 2012,19(3): 283-290.[66] Lim CY, Tam WL, Zhang J, Ang HS, Jia H, Lipovich L, Ng HH, Wei CL, Sung WK, Robson P, Yang H, Lim B. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell, 2008, 3(5): 543-554.[67] Oates AC, Pratt SJ, Vail B, Yan Yl, Ho RK, Johnson SL, Postlethwait JH, Zon LI. The zebrafish klf gene family. Blood, 2001, 98(6): 1792-1801.[68] Gardiner MR, Daggett DF, Zon LI, Perkins AC. Zebrafish KLF4 is essential for anterior mesendoderm/pre-polster differentiation and hatching. Dev Dyn, 2005, 234(4): 992-996.[69] Gardiner MR, Gongora MM, Grimmond SM, Perkins AC. A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev, 2007, 124(9-10): 762-774.[70] Li IC, Chan CT, Lu YF, Wu YT, Chen YC, Li GB, Lin CY, Hwang SP. Zebrafish Kruppel-like factor 4a represses intestinal cell proliferation and promotes differentiation of intestinal cell lineages. PLoS One, 2011, 6(6): e20974.[71] 陈艳玫, 姚錱. 转录因子Sox2的研究进展. 生命科学, 2004, 16(3): 129-134.[72] Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embry-onic stem cells. Stem Cells, 2008, 26(8): 1931-1938.[73] Pevny LH, Nicolis SK. Sox2 roles in neural stem cells. Int J Biochem Cell Biol, 2010, 42(3): 421-424.[74] Mak AC, Szeto IY, Fritzsch B, Cheah KS. Differential and overlapping expression pattern of SOX2 and SOX9 in in-ner ear development. Gene Expr Patterns, 2009, 9(6): 444-453.[75] Okuda Y, Yoda H, Uchikawa M, Furutani-Seiki M, Takeda H, Kondoh H, Kamachi Y. Comparative genomic and ex-pression analysis of group B1 sox genes in zebrafish indi-cates their diversification during vertebrate evolution. Dev Dyn, 2006, 235(3): 811-825.[76] Okuda Y, Ogura E, Kondoh H, Kamachi Y. B1 SOX coor-dinate cell specification with patterning and morphogenesis in the early zebrafish embryo. PLoS Genet, 2010, 6(5): e1000936.[77] Millimaki BB, Sweet EM, Riley BB. Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear. Dev Biol, 2010, 338(2): 262-269.[78] Germanà A, Montalbano G, Guerrera MC, Laura R, Levanti M, Abbate F, de Carlos F, Vega JA, Ciriaco E. Sox-2 in taste bud and lateral line system of zebrafish during development. Neurosci Lett, 2009, 467(1): 36-39.[79] Yanai I, Peshkin L, Jorgensen P, Kirschner MW. Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell, 2011, 20(4): 483-496.[80] Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development, 2009, 136(19): 3289-3299.[81] Snir M, Ofir R, Elias S, Frank D. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. EMBO J, 2006, 25(15): 3664-3674.[82] Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P. Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev Dyn, 2002, 225(4): 384-391. |
[1] | 熊凤,谢训卫,潘鲁媛,李阔宇,柳力月,张昀,李玲璐,孙永华. 国家斑马鱼资源中心的资源、技术和服务建设[J]. 遗传, 2018, 40(8): 683-692. |
[2] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[3] | 刘姗姗, 张翠珍, 彭刚. 饥饿对幼年斑马鱼下丘脑摄食相关性神经肽表达的影响[J]. 遗传, 2016, 38(9): 821-830. |
[4] | 张峰华,王厚鹏,黄思雨,熊凤,朱作言,孙永华. 两种密码子优化的Cas9编码基因在斑马鱼胚胎中基因敲除效率的比较[J]. 遗传, 2016, 38(2): 144-154. |
[5] | 顾爱华 严丽锋. 斑马鱼在再生医学研究中的应用及进展[J]. 遗传, 2013, 35(7): 856-866. |
[6] | 李礼,罗凌飞. 以斑马鱼为模式动物研究器官的发育与再生[J]. 遗传, 2013, 35(4): 421-432. |
[7] | 徐冉冉 张从伟 曹羽 王强. 缺失mir122抑制斑马鱼肝脏前体细胞向肝细胞分化[J]. 遗传, 2013, 35(4): 488-494. |
[8] | 沈延 黄鹏 张博. TALEN构建与斑马鱼基因组定点突变的实验方法与流程[J]. 遗传, 2013, 35(4): 533-544. |
[9] | 李辉辉 黄萍 董巍 朱作言 刘东. 斑马鱼研究走向生物医学[J]. 遗传, 2013, 35(4): 410-420. |
[10] | 李小泉,杜久林. 幼年斑马鱼的视觉系统与捕食行为[J]. 遗传, 2013, 35(4): 468-476. |
[11] | 孙婷 谢翔 张剑卿 包静 汤川政 雷道希 邱菊辉 王贵学. 水平回转培养对斑马鱼血管发育的影响[J]. 遗传, 2013, 35(4): 502-510. |
[12] | 张春霞 刘峰. 斑马鱼高分辨率整胚原位杂交实验方法与流程[J]. 遗传, 2013, 35(4): 522-528. |
[13] | 佟静媛,柳星峰,贾顺姬. Rbb4l促进TGF-β/Nodal信号转导和斑马鱼胚胎的背部发育[J]. 遗传, 2013, 35(4): 477-487. |
[14] | 刘新星 张雨田 张博. 构建斑马鱼心脏损伤-再生模型的手术方法[J]. 遗传, 2013, 35(4): 529-532. |
[15] | 王学耕 朱作言 孙永华 赵珏. 鱼类核移植与重编程[J]. 遗传, 2013, 35(4): 433-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: