[1] Ren CF, Sun HY, Wang LZ, Zhang GM, Fan YX, Yan GY, Wang D, Wang F. Reprogramming mechanism and genetic stability of induced pluripotent stem cells (iPSCs). Hereditas (Beijing) , 2014, 36(9): 879-887. 任才芳, 孙红艳, 王立中, 张国敏, 樊懿萱, 颜光耀, 王丹, 王锋. iPSCs遗传稳定性与重编程机制的研究进展. 遗传, 2014, 36(9): 879-887. [2] Wanet A, Arnould T, Najimi M, Renard P. Connecting mitochondria, metabolism, and stem cell fate. Stem Cells Dev , 2015, 24(17): 1957-1971. [3] Teslaa T, Teitell MA. Pluripotent stem cell energy metabolism: an update. EMBO J , 2015, 34(2): 138-153. [4] Bukowiecki R, Adjaye J, Prigione A. Mitochondrial function in pluripotent stem cells and cellular reprogramming. Gerontology , 2014, 60(2): 174-182. [5] Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T, Adjaye J. HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells , 2014, 32(2): 364-376. [6] Lees JG, Rathjen J, Sheedy JR, Gardner DK, Harvey AJ. Distinct profiles of human embryonic stem cell metabolism and mitochondria identified by oxygen. Reproduction , 2015, 150(4): 367-382. [7] Kwon IK, Lee SC, Hwang YS, Heo JS. Mitochondrial function contributes to oxysterol-induced osteogenic differentiation in mouse embryonic stem cells. Biochim Biophys Acta , 2015, 1853(3): 561-572. [8] Hoppins S. The regulation of mitochondrial dynamics. Curr Opin Cell Bio , 2014, 29: 46-52. [9] Kowno M, Watanabe-Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, Wang YY, Ishigaki Y, Ninomiya N, Noguchi TA, Kokubu Y, Ohnishi K, Nakajima Y, Kato K, Intoh A, Takada H, Yamakawa N, Wang PC, Asashima M, Kurisaki A. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS One , 2014, 9(4): e81552. [10] Chung S, Arrell DK, Faustino RS, Terzic A, Dzeja PP. Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. J Mol Cell Cardiol , 2010, 48(4): 725-734. [11] Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells , 2010, 28(4): 721-733. [12] Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA, Ramalho-Santos J, Van Houten B, Schatten G. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One , 2011, 6(6): e20914. [13] Lonergan T, Brenner C, Bavister B. Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol , 2006, 208(1): 149- 153. [14] Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci , 2007, 120(Pt 22): 4025-4034. [15] Birket MJ, Orr AL, Gerencser AA, Madden DT, Vitelli C, Swistowski A, Brand MD, Zeng XM. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci , 2011, 124(Pt 3): 348-358. [16] Zhang J, Khvorostov I, Hong JS, Oktay Y, Vergnes L, Nuebel E, Wahjudi PN, Setoguchi K, Wang G, Do AN, Jung HJ, McCaffery JM, Kurland IJ, Reue K, Lee WN, Koehler CM, Teitell MA. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J , 2011, 30(24): 4860-4873. [17] Suhr ST, Chang EA, Tjong J, Alcasid N, Perkins GA, Goissis MD, Ellisman MH, Perez GI, Cibelli JB. Mitochondrial rejuvenation after induced pluripotency. PLoS One , 2010, 5(11): e14095. [18] Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab , 2011, 14(2): 264-271. [19] Chen TT, Shen L, Yu J, Wa |