遗传 ›› 2024, Vol. 46 ›› Issue (10): 860-870.doi: 10.16288/j.yczz.24-221
温馨(), 梅锦, 钱美玉, 蒋一丹, 王娟, 许士博, 王翠喆, 张君(
)
收稿日期:
2024-08-02
修回日期:
2024-09-01
出版日期:
2024-09-02
发布日期:
2024-09-02
通讯作者:
张君,博士,教授,研究方向:肥胖、炎症及代谢相关疾病中关键信号转导分子的调控机制和干预方式基础研究工作。E-mail: zhangjunyc@.163.com作者简介:
温馨,硕士研究生,专业方向:基础医学生物化学与分子生物学。E-mail: 1391476108@qq.com
基金资助:
Xin Wen(), Jin Mei, Meiyu Qian, Yidan Jiang, Juan Wang, Shibo Xu, Cuizhe Wang, Jun Zhang(
)
Received:
2024-08-02
Revised:
2024-09-01
Published:
2024-09-02
Online:
2024-09-02
Supported by:
摘要:
GULP1是一种含磷酸化酪氨酸结合(phosphotyrosine-binding,PTB)结构域的吞噬衔接蛋白,已有的研究表明它可促进脂肪细胞3T3-L1的糖摄取。为进一步挖掘GULP1下游关键的代谢相关差异基因,本研究对过表达GULP1的脂肪细胞和骨骼肌细胞进行转录组分析,然后对表达异常基因进行生物信息学分析,并通过实时荧光定量PCR (real-time fluorescent quantitative PCR,qRT-PCR)与转录组测序进行相互验证。 结果表明:以P<0.05和|Log2Foldchange|≥1为阈值筛选差异表达基因,发现与对照细胞相比,过表达GULP1的脂肪细胞中有278个上调基因和263个下调基因,与代谢相关的GO (Gene Ontology)条目包括胆固醇生物合成过程、胆固醇代谢过程、对脂多糖的反应、脂质代谢过程等,有52个代谢相关差异表达基因富集到10条KEGG(Kyoto Encyclopedia of Genes and Genomes)通路,其中脂质代谢被高度富集;过表达GULP1的骨骼肌细胞有280个上调基因和302个下调基因,与代谢相关的GO条目包括激素代谢过程、对脂多糖的反应、单碳代谢过程等,有86个代谢相关差异表达基因富集到10条KEGG通路,其中氨基酸代谢、脂质代谢、碳水化合物代谢被高度富集。GULP1的生物学功能涉及广泛,包括脂代谢、肿瘤等方面。本研究通过转录组学以及生物信息学分析,筛选出GULP1下游关键的代谢相关差异基因,获得了过表达GULP1后的代谢相关差异基因及信号通路,为今后GULP1下游靶基因的研究提供了重要的理论依据。
温馨, 梅锦, 钱美玉, 蒋一丹, 王娟, 许士博, 王翠喆, 张君. 基于转录组测序对GULP1下游靶基因筛选及分析[J]. 遗传, 2024, 46(10): 860-870.
Xin Wen, Jin Mei, Meiyu Qian, Yidan Jiang, Juan Wang, Shibo Xu, Cuizhe Wang, Jun Zhang. Screening and analysis of GULP1 downstream target genes based on transcriptomic sequencing[J]. Hereditas(Beijing), 2024, 46(10): 860-870.
表1
过滤后序列数据统计表"
样本 | 原始 reads 数目 | 原始 测序量 | 过滤后的Reads数目 | 过滤后 的测序量 | 有效碱基 百分比 | Q30(%) | GC(%) |
---|---|---|---|---|---|---|---|
3T3-NC1 | 48.75 | 7.18 | 47.51 | 7 | 97.45 | 95.13 | 51.88 |
3T3-NC2 | 48.84 | 7.18 | 47.45 | 6.97 | 97.15 | 95.18 | 52.55 |
3T3-NC3 | 47.86 | 7.06 | 46.7 | 6.89 | 97.57 | 95.11 | 52.56 |
3T3-OE1 | 47.87 | 7.06 | 46.71 | 6.89 | 97.56 | 95.19 | 52.25 |
3T3-OE2 | 49.11 | 7.2 | 47.63 | 6.99 | 96.99 | 95.08 | 51.98 |
3T3-OE3 | 48.65 | 7.18 | 47.49 | 7.01 | 97.6 | 95.34 | 52.52 |
C2C12-NC1 | 48.39 | 7.12 | 47.06 | 6.93 | 97.26 | 95.17 | 52.9 |
C2C12-NC2 | 48.7 | 7.2 | 47.52 | 7.02 | 97.56 | 95.1 | 52.87 |
C2C12-NC3 | 48.5 | 7.12 | 47.11 | 6.92 | 97.13 | 95.23 | 52.53 |
C2C12-OE1 | 48.42 | 7.1 | 46.95 | 6.89 | 96.96 | 95.08 | 52.42 |
C2C12-OE2 | 48.21 | 7.1 | 46.91 | 6.91 | 97.3 | 95.11 | 53.01 |
C2C12-OE3 | 48.32 | 7.14 | 47.25 | 6.99 | 97.79 | 95.05 | 52.3 |
表2
关键基因的PCR引物序列"
基因 | 上游引物序列(5′→3′) | 下游引物序列(5′→3′) |
---|---|---|
Abca1 | GCTTGTTGGCCTCAGTTAAGG | GTAGCTCAGGCGTACAGAGAT |
Ccl3 | TTCTCTGTACCATGACACTCTGC | CGTGGAATCTTCCGGCTGTAG |
Ccl5 | GCTGCTTTGCCTACCTCTCC | TCGAGTGACAAACACGACTGC |
Fos | CGGGTTTCAACGCCGACTA | TTGGCACTAGAGACGGACAGA |
Il6 | TAGTCCTTCCTACCCCAATTTCC | TTGGTCCTTAGCCACTCCTTC |
Lbp | GATCACCGACAAGGGCCTG | GGCTATGAAACTCGTACTGCC |
Map2k6 | ATGTCTCAGTCGAAAGGCAAG | TTGGAGTCTAAATCCCGAGGC |
Map3k8 | ATGGAGTACATGAGCACTGGA | GGCTCTTCACTTGCATAAAGGTT |
Tlr7 | ATGTGGACACGGAAGAGACAA | GGTAAGGGTAAGATTGGTGGTG |
Angpt4 | CAGCCAGCTATGCTACTAGATGG | CCTCTGGAGGCTATTGGAGC |
Gngt2 | CAGGACCTCAGTGAGAAGGAG | CCTGCTTGGGCCTCTACATAAT |
Il2rb | TGGAGCCTGTCCCTCTACG | TCCACATGCAAGAGACATTGG |
Ret | TTTCTCAAGGGATGCTTACTGGG | CCCGTAGGGCATGGACATAGA |
Adora2a | GCCATCCCATTCGCCATCA | GCAATAGCCAAGAGGCTGAAGA |
Atp1b2 | GGCAGGTGGTTGAGGAGTG | GGGGTATGGTCAGAGACGGT |
Calml4 | TCTTCTGGTGTCCATGAGGTG | GAAGTCCAGCTCTCCGTTCTT |
Npr1 | GCTTGTGCTCTATGCAGATCG | TCGACGAACTCCTGGTGATTTA |
Npy1r | GCTTGTGCTCTATGCAGATCG | TCGACGAACTCCTGGTGATTTA |
[1] |
Sharifi S, Daghighi S, Motazacker MM, Badlou B, Sanjabi B, Akbarkhanzadeh A, Rowshani AT, Laurent S, Peppelenbosch MP, Rezaee F. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes. Sci Rep, 2013, 3: 2173.
doi: 10.1038/srep02173 pmid: 23838847 |
[2] |
Kiss RS, Ma Z, Nakada-Tsukui K, Brugnera E, Vassiliou G, McBride HM, Ravichandran KS, Marcel YL. The lipoprotein receptor-related protein-1 (LRP) adapter protein GULP mediates trafficking of the LRP ligand prosaposin, leading to sphingolipid and free cholesterol accumulation in late endosomes and impaired efflux. J Biol Chem, 2006, 281(17): 12081-12092.
doi: 10.1074/jbc.M600621200 pmid: 16497666 |
[3] |
Lee CY, Ruel I, Denis M, Genest J, Kiss RS. Cholesterol trapping in Niemann-Pick disease type B fibroblasts can be relieved by expressing the phosphotyrosine binding domain of GULP. J Clin Lipidol, 2013, 7(2): 153-164.
doi: 10.1016/j.jacl.2012.02.006 pmid: 23415435 |
[4] |
Trommsdorff M, Borg JP, Margolis B, Herz J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem, 1998, 273(50): 33556-33560.
doi: 10.1074/jbc.273.50.33556 pmid: 9837937 |
[5] |
Ji AL, Meyer JM, Cai L, Akinmusire A, de Beer MC, Webb NR, van der Westhuyzen DR. Scavenger receptor SR-BI in macrophage lipid metabolism. Atherosclerosis, 2011, 217(1): 106-112.
doi: 10.1016/j.atherosclerosis.2011.03.017 pmid: 21481393 |
[6] | Li RM, Oteiza A, Sørensen KK, McCourt P, Olsen R, Smedsrød B, Svistounov D. Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized low-density lipoproteins. Am J Physiol Gastrointest Liver Physiol, 2011, 300(1): G71-G81. |
[7] | Ma CIJ, Martin C, Ma Z, Hafiane A, Dai M, Lebrun JJ, Kiss RS. Engulfment protein GULP is regulator of transforming growth factor-β response in ovarian cells. J Biol Chem, 2012, 287(24): 20636-20651. |
[8] | Park SY, Kim SY, Kang KB, Kim IS. Adaptor protein GULP is involved in stabilin-1-mediated phagocytosis. Biochem Biophys Res Commun, 2010, 398(3): 467-472. |
[9] |
Su HP, Nakada-Tsukui K, Tosello-Trampont AC, Li YH, Bu GJ, Henson PM, Ravichandran KS. Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem, 2002, 277(14): 11772-11779.
doi: 10.1074/jbc.M109336200 pmid: 11729193 |
[10] |
Sun DJ, Guo YY, Tang PY, Li H, Chen LX. Arf6 as a therapeutic target: Structure, mechanism, and inhibitors. Acta Pharm Sin B, 2023, 13(10): 4089-4104.
doi: 10.1016/j.apsb.2023.06.008 pmid: 37799386 |
[11] |
Ma Z, Nie ZZ, Luo RB, Casanova JE, Ravichandran KS. Regulation of Arf6 and ACAP1 signaling by the PTB-domain-containing adaptor protein GULP. Curr Biol, 2007, 17(8): 722-727.
doi: 10.1016/j.cub.2007.03.014 pmid: 17398097 |
[12] | Kim SY, Park SY, Kim JE. GULP1 deficiency reduces adipogenesis and glucose uptake via downregulation of PPAR signaling and disturbing of insulin/ERK signaling in 3T3-L1 cells. J Cell Physiol, 2024, 239(2): e31173. |
[13] | Hayashi M, Guida E, Inokawa Y, Goldberg R, Reis LO, Ooki A, Pilli M, Sadhukhan P, Woo J, Choi W, Izumchenko E, Gonzalez LM, Marchionni L, Zhavoronkov A, Brait M, Bivalacqua T, Baras A, Netto GJ, Koch W, Singh A, Hoque MO. GULP1 regulates the NRF2-KEAP1 signaling axis in urothelial carcinoma. Sci Signal, 2020, 13(645): eaba0443. |
[14] | Teramoto Y, Jiang GY, Goto T, Mizushima T, Nagata Y, Netto GJ, Miyamoto H. Androgen receptor signaling induces cisplatin resistance via down-regulating GULP1 expression in bladder cancer. Int J Mol Sci, 2021, 22(18): 10030. |
[15] |
Maldonado L, Brait M, Izumchenko E, Begum S, Chatterjee A, Sen T, Loyo M, Barbosa A, Poeta ML, Makarev E, Zhavoronkov A, Fazio VM, Angioli R, Rabitti C, Ongenaert M, Van Criekinge W, Noordhuis MG, de Graeff P, Wisman GBA, van der Zee AGJ, Hoque MO. Integrated transcriptomic and epigenomic analysis of ovarian cancer reveals epigenetically silenced GULP1. Cancer Lett, 2018, 433: 242-251.
doi: S0304-3835(18)30436-1 pmid: 29964205 |
[16] |
Huang MY, Long Y, Jin YZ, Ya WT, Meng DD, Qin TZ, Su LZ, Zhou W, Wu JC, Huang CH, Huang Q. Comprehensive analysis of the lncRNA-miRNA-mRNA regulatory network for bladder cancer. Transl Androl Urol, 2021, 10(3): 1286-1301.
doi: 10.21037/tau-21-81 pmid: 33850763 |
[17] | Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487): eaaw5473. |
[18] | Wang K, Ming H, Zuo J, Tian HL, Huang CH. A review of the redox regulation of tumor metabolism. Journal of Sichuan University (Medical Sciences), 2021, 52(1): 57-63. |
王魁, 明慧, 左静, 田海隆, 黄灿华. 氧化还原信号调控与肿瘤代谢. 四川大学学报(医学版), 2021, 52(1): 57-63 | |
[19] |
Wang ZF, Qin J, Zhao JG, Li JH, Li D, Popp M, Popp F, Alakus H, Kong B, Dong QZ, Nelson PJ, Zhao Y, Bruns CJ. Inflammatory IFIT3 renders chemotherapy resistance by regulating post-translational modification of VDAC2 in pancreatic cancer. Theranostics, 2020, 10(16): 7178-7192.
doi: 10.7150/thno.43093 pmid: 32641986 |
[20] |
Ning S, Pagano JS, Barber GN. IRF7: activation, regulation, modification and function. Genes Immun, 2011, 12(6): 399-414.
doi: 10.1038/gene.2011.21 pmid: 21490621 |
[21] | Yan S, Kumari M, Xiao HP, Jacobs C, Kochumon S, Jedrychowski M, Chouchani E, Ahmad R, Rosen ED. IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis. J Clin Invest, 2021, 131(7): e144888. |
[22] |
Xu T, Zhu CZ, Chen JM, Song FF, Ren XX, Wang SS, Yi XF, Zhang YW, Zhang WL, Hu Q, Qin H, Liu YJ, Zhang S, Tan Z, Pan ZF, Huang P, Ge MH. ISG15 and ISGylation modulates cancer stem cell-like characteristics in promoting tumor growth of anaplastic thyroid carcinoma. J Exp Clin Cancer Res, 2023, 42(1): 182.
doi: 10.1186/s13046-023-02751-9 pmid: 37501099 |
[23] | Li JY, Zhao Y, Gong S, Wang MM, Liu X, He QM, Li YQ, Huang SY, Qiao H, Tan XR, Ye ML, Zhu XH, He SW, Li Q, Liang YL, Chen KL, Huang SW, Li QJ, Ma J, Liu N. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun, 2023, 14(1): 865. |
[24] | Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res, 2021, 84: 101117. |
[25] | Park SY, Kang KB, Thapa N, Kim SY, Lee SJ, Kim IS. Requirement of adaptor protein GULP during stabilin-2- mediated cell corpse engulfment. J Biol Chem, 2008, 283(16): 10593-10600. |
[26] |
Osada Y, Sunatani T, Kim IS, Nakanishi Y, Shiratsuchi A. Signalling pathway involving GULP, MAPK and Rac1 for SR-BI-induced phagocytosis of apoptotic cells. J Biochem, 2009, 145(3): 387-394.
doi: 10.1093/jb/mvn176 pmid: 19122200 |
[27] |
Merthan L, Haller A, Thal DR, von Einem B, von Arnim CAF. The role of PTB domain containing adaptor proteins on PICALM-mediated APP endocytosis and localization. Biochem J, 2019, 476(14): 2093-2109.
doi: 10.1042/BCJ20180840 pmid: 31300465 |
[28] |
Vivien Chiu WY, Koon AC, Ki Ngo JC, Edwin Chan HY, Lau KF. GULP1/CED-6 ameliorates amyloid-β toxicity in a Drosophila model of Alzheimer's disease. Oncotarget, 2017, 8(59): 99274-99283.
doi: 10.18632/oncotarget.20062 pmid: 29245900 |
[29] |
Datta S, Nam HS, Hayashi M, Maldonado L, Goldberg R, Brait M, Sidransky D, Illei P, Baras A, Vij N, Hoque MO. Expression of GULP1 in bronchial epithelium is associated with the progression of emphysema in chronic obstructive pulmonary disease. Respir Med, 2017, 124: 72-78.
doi: S0954-6111(17)30032-X pmid: 28284325 |
[30] |
Gong JY, Gaitanos TN, Luu O, Huang YY, Gaitanos L, Lindner J, Winklbauer R, Klein R. Gulp1 controls Eph/ephrin trogocytosis and is important for cell rearrangements during development. J Cell Biol, 2019, 218(10): 3455-3471.
doi: 10.1083/jcb.201901032 pmid: 31409653 |
[31] |
Song G, Suzuki OT, Santos CM, Lucas AT, Wiltshire T, Zamboni WC. Gulp1 is associated with the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) in inbred mouse strains. Nanomedicine, 2016, 12(7): 2007-2017.
doi: S1549-9634(16)30066-1 pmid: 27288666 |
[32] | Chau DD, Yu ZC, Chan WWR, Yuqi Z, Chang RCC, Ngo JCK, Chan HYE, Lau KF. The cellular adaptor GULP1 interacts with ATG14 to potentiate autophagy and APP processing. Cell Mol Life Sci, 2024, 81(1): 323. |
[33] |
Faralli JA, Desikan H, Peotter J, Kanneganti N, Weinhaus B, Filla MS, Peters DM. Genomic/proteomic analyses of dexamethasone-treated human trabecular meshwork cells reveal a role for GULP1 and ABR in phagocytosis. Mol Vis, 2019, 25: 237-254.
pmid: 31516309 |
[1] | 吴岳阳, 周小燕, 吴玉峰, 黄驹. NMD途径功能缺陷对水稻表型及转录组的影响[J]. 遗传, 2024, 46(7): 540-551. |
[2] | 沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451. |
[3] | 孙明洁, 卢佳丽, 逄越. 七鳃鳗——铁代谢研究的极佳模型[J]. 遗传, 2024, 46(5): 387-397. |
[4] | 韦恒, 刘天鹏, 何继红, 董孔军, 任瑞玉, 张磊, 李亚伟, 郝子义, 杨天育. 糜子GRF转录因子全基因组鉴定及在茎分生组织中的表达特征[J]. 遗传, 2024, 46(3): 242-255. |
[5] | 徐晓鹏, 范小英. 单细胞精度的表达数量性状位点研究进展[J]. 遗传, 2024, 46(10): 795-806. |
[6] | 万羽鑫, 朱欣雨, 赵宇, 孙娜, 江天彤妃, 徐娟. 计算解析异常代谢对乳腺癌微环境重塑的调控机制[J]. 遗传, 2024, 46(10): 871-885. |
[7] | 时文睿, 渠鸿竹, 方向东. 痛风的多组学研究进展[J]. 遗传, 2023, 45(8): 643-657. |
[8] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[9] | 冒姝羽, 赵昌睿, 刘畅. 核受体REV-ERBα整合生物钟与能量代谢[J]. 遗传, 2023, 45(2): 99-114. |
[10] | 王芳, 张跃博, 蒋谦, 印遇龙, 谭碧娥, 陈家顺. 宁乡猪皮下脂肪与肌内脂肪组织转录组差异分析[J]. 遗传, 2023, 45(12): 1147-1157. |
[11] | 郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608. |
[12] | 王孟晓, 何淑君. 神经胶质细胞调控黑腹果蝇生理行为研究进展[J]. 遗传, 2022, 44(4): 300-312. |
[13] | 曾义准, 张陶, 徐璎. 分析小鼠昼夜节律变化的行为学方法[J]. 遗传, 2022, 44(4): 346-357. |
[14] | 赵浩强, 王小斐, 高少培. 植物油体蛋白基因家族研究进展[J]. 遗传, 2022, 44(12): 1128-1140. |
[15] | 梁佳琦, 刘畅, 张雯翔, 陈思禹. 肝脏分泌因子与代谢性疾病[J]. 遗传, 2022, 44(10): 853-866. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: