遗传 ›› 2025, Vol. 47 ›› Issue (7): 797-812.doi: 10.16288/j.yczz.25-084
陈佳丹1(), 林涛2, 王弯3, 金成4, 左建儒3,5, 粘金沯3(
)
收稿日期:
2025-03-26
修回日期:
2025-04-05
出版日期:
2025-07-20
发布日期:
2025-04-24
通讯作者:
粘金沯,博士,博士后,研究方向:植物氮营养调控。E-mail: jinqiang-nian@genetics.ac.cn作者简介:
陈佳丹,硕士研究生,专业方向:农艺与种业。E-mail: chenjiadan2022@163.com
基金资助:
Jiadan Chen1(), Tao Lin2, Wan Wang3, Cheng Jin4, Jianru Zuo3,5, Jinqiang Nian3(
)
Received:
2025-03-26
Revised:
2025-04-05
Published:
2025-07-20
Online:
2025-04-24
Supported by:
摘要:
水稻的单株产量主要由分蘖数、穗粒数和粒重等三要素决定,并且这3个因素相互联系、相互制约和相互补偿,尤其是穗数和每穗粒数有较大的负相关,只有在各因素协调发展的情况下,才能获得高产。由于调控途径和通路之间的复杂性,水稻穗发育的调控机制仍未得到全面解释,需要进一步研究。本研究对东北优异粳稻品种空育131的EMS诱变体库进行筛选,鉴定出2个株高和每穗粒数均显著增加、分蘖减少的突变体,将其命名为hry1-1 (height, reduced tiller, yield 1-1)和hry1-2。与野生型相比,hry1-1和hry1-2突变体的株高、单株产量、穗长、每穗粒数、粒长、粒宽和粒厚等性状均显著增加,而分蘖数显著下降。遗传分析结果显示,hry1-1和hry1-2为等位变异突变体,其表型是由单个核基因隐性突变造成的。基于重测序的MutMap分析和图位克隆,本研究将HRY1基因定位在水稻第1号染色体上M33~M28标记之间576 kb物理区间内。细胞学分析结果表明,hry1突变体幼穗分化过程中具有更高的细胞分裂频次。此外,hry1突变体中细胞周期蛋白相关基因CycAs、CycBs、CycDs和CDKs等表达量显著高于野生型,表明HRY1可能通过调控细胞分裂影响水稻的穗发育和产量。综上所述,HRY1基因在水稻穗分化和发育调控过程中具有的重要作用,将为水稻高产稳产的分子设计育种提供新基因和思路。
陈佳丹, 林涛, 王弯, 金成, 左建儒, 粘金沯. 水稻大穗突变体hry1的鉴定与基因定位[J]. 遗传, 2025, 47(7): 797-812.
Jiadan Chen, Tao Lin, Wan Wang, Cheng Jin, Jianru Zuo, Jinqiang Nian. Identification and gene mapping of hry1 mutant in rice[J]. Hereditas(Beijing), 2025, 47(7): 797-812.
表1
HRY1基因图位克隆所用的引物"
引物名称 | 引物序列(5′→3′) |
---|---|
M6 | F:TAAACTGCATGCGACAAGAT R:TACAATAGCACGCAAAAGGA |
M10 | F:CCCACTACTTGCTTTGATCT R:CCATAAGCTACTGTGAACGA |
M24 | F:GACGAGGACTCCTATCTAGT R:AAATTGCTAGCACCAACTCT |
M27 | F:GATGGCCATAAAGCGTAACT R:TAAAGGGCAGGTATCGAATG |
M28 | F:AGAAACAGTACGGTTGGTTT R:TGGCAACAGATCGTCATAAT |
M29 | F:TTCTGCATAGACATCCCCTA R:TAAAAATCTCGAGGGTGAGC |
M33 | F:ATCAATCCGCGATTACCTTT R:GTATTCGTGGGCTATTCACT |
M39 | F:GTTCCGCATGCAAGACAT R:GGCTTACGGTCCAATAAGAA |
M85 | F:GGGCAGAGAATTACTTTAAC R:TGAAGGAGATGAATCGAAGC |
表2
qRT-PCR所用引物"
基因名称 | 引物序列(5'→3') | 基因名称 | 引物序列(5'→3') |
---|---|---|---|
GW2 | F:CAgCAgCgCATTCCCAgTTTTC | IPA1 | F:GGATATGGTGCCAACACATACAG |
R:GTGGTCAGCCGAGCACTCTC | R:GACATGGCTGCAGCCTGGTTGTG | ||
GS3 | F:CATCGGAGAAGCGAAGTCAT | CycA1;1 | F:GTTTCGGTTGACGAGACGATGT |
R:TTGAGGTTGAAGGAGGAGGA | R:CGCTGCAAGGAACCTAGAACTG | ||
GS5 | F:CATTCCATGCAAATGCCAGTGGAC | CycA2;1 | F:AATATTGAGCGAAACAGGGACAG |
R:CAGCCCTGCTTTGATGAGCTTG | R:AGGAAGCACACATTTGAGGATTT | ||
GW8 | F:AGGAGTTTGATGAGGCCAAG | CycA3;2 | F:AGGTTGTCAAGATGGAGAGCGA |
R:GCGTGTAGTATGGGCTCTCC | R:CGCTTTTTGTCTTCCTGGCA | ||
GL3.1 | F:TCACAACTCCCAGGATAGG | CycB1;1 | F:CACTCTCAAGCACCACACTGGA |
R:TTTGTCTCGCTCGCTCAT | R:ACAACCCTCAGCTTGCTCTCAG | ||
GS3.1 | F:ATCTCGATGCTGTTCCTTGGC | CycB2;2 | F:CTCAAGGCTGCACAATCTGACA |
R:AGATGGGCTCCATCCCGAG | R:GCATTGACGGCTGGAATTTG | ||
GGC2 | F:GTGCAACTGCTTGTTATGCC | CycD2;1 | F:GATTGGAGTGTTCTTGGAGGAAA |
R:GCTCGGTCTACAGCACGAT | R:TGTTGCATCCAAGATTCGTCAT | ||
TAW1 | F:FGCTGGAGAAGACGAAGAAAGATAG | CycD4;2 | F:TGGTAGAAGAAGACATCGCAGAG |
R:CATTCCCCCTCCTCCTCC | R:TCTCCTGGTGCTTGCAGGTT | ||
LAX1 | F:CAAGAGGCGGTGGGCTAC | CycU4;3 | F:GCCTCCTCATCACATCCGTC |
R:ACCGTGGACATTGCACACC | R:GCCAAAGAGGAAGTCCACCTC | ||
DEP1 | F:GTGTGGAGATGGGGGAGGAG | CDKD | F:GGTCCTGGGAGAGGGAACC |
R:AGCTCATCCTTGAGGAACGTGA | R:TTAATTTCCCTCAATGCAGTGAA | ||
MOC1 | F:GCTCGCCCTCCCTATTAAAC | CDKE | F:TACGCCGAGCACGATCTCTA |
R:CACCACCAGAGCTACTACAAC | R:GGAGATAGTTGAGACCATTGAGCA | ||
OsRR1 | F:CTTCGCTGGAGTTGCCAT | UBQ | F:ACCCTGGCTGACTACAACATC |
R:TCAAGCACACCACAGGTT | R:AGTTGACAGCCCTAGGGTG | ||
OsCKX2 | F:TGTCCCTTCTACAATGGTGC | ||
R:CATCCTGACCTGCTCTTGCT |
[1] | Yan YP, Yu XQ, Ren DY, Qian Q. Genetic mechanisms and breeding utilization of grain number per panicle in rice. Chin Bull Bot, 2023, 58(3): 359-372. |
严语萍, 俞晓琦, 任德勇, 钱前. 水稻穗粒数遗传机制与育种利用. 植物学报, 2023, 58(3): 359-372. | |
[2] |
Ying JZ, Ma M, Bai C, Huang XH, Liu JL, Fan YY, Song XJ. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018, 11(5): 750-753.
pmid: 29567450 |
[3] |
Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.
pmid: 15976269 |
[4] |
Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41(4): 494-497.
pmid: 19305410 |
[5] | Taguchi-Shiobara F, Kawagoe Y, Kato H, Onodera H, Tagiri A, Hara N, Miyao A, Hirochika H, Kitano H, Yano M, Toki S. A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breed Sci, 2011, 61(1): 17-25. |
[6] |
Zhou Y, Zhu JY, Li ZY, Yi CD, Liu J, Zhang HG, Tang SZ, Gu MH, Liang GH. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 2009, 183(1): 315-324.
pmid: 19546322 |
[7] |
Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42(6): 541-544.
pmid: 20495565 |
[8] |
Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42(6): 545-549.
pmid: 20495564 |
[9] |
Lu ZF, Yu H, Xiong GS, Wang J, Jiao YQ, Liu GF, Jing YH, Meng XB, Hu XM, Qian Q, Fu XD, Wang YH, Li JY. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell, 2013, 25(10): 3743-3759.
pmid: 24076974 |
[10] |
Luo JH, Liu H, Zhou TY, Gu BG, Huang XH, Shangguan YY, Zhu JJ, Li Y, Zhao Y, Wang YC, Zhao Q, Wang AH, Wang ZQ, Sang T, Wang ZX, Han B. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013, 25(9): 3360-3376.
pmid: 35449414 |
[11] |
Song XG, Meng XB, Guo HY, Cheng Q, Jing YH, Chen MJ, Liu GF, Wang B, Wang YH, Li JY, Yu H. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol, 2022, 40(9): 1403-1411.
pmid: 20566706 |
[12] |
Wei XJ, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153(4): 1747-1758.
pmid: 20566706 |
[13] |
Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40(6): 761-767.
pmid: 18454147 |
[14] |
Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4(2): 319-330.
pmid: 21148627 |
[15] |
Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh JI, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J, 2012, 69(1): 168-180.
pmid: 21910771 |
[16] |
Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol, 2010, 51(1): 47-57.
pmid: 19933267 |
[17] |
Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol, 2001, 231(2): 364-373.
pmid: 11237465 |
[18] |
Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130(16): 3841-3850.
pmid: 12835399 |
[19] |
Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang XH, Yoshida H, Kyozuka J, Chen F, Sato Y. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell, 2011, 23(9): 3276-3287.
pmid: 21963665 |
[20] |
Dong Q, Zhang ZH, Wang LL, Zhu YJ, Fan YY, Mou TM, Ma LY, Zhuang JY. Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice. Rice (N Y), 2018, 11(1): 44.
pmid: 30073424 |
[21] |
Zhang T, Wang SM, Sun SF, Zhang Y, Li J, You J, Su T, Chen WB, Ling YH, He GH, Zhao FM. Analysis of QTL for grain size in a rice chromosome segment substitution line Z1392 with long grains and fine mapping of qGL-6. Rice (N Y), 2020, 13(1): 40.
pmid: 32529315 |
[22] |
Yu JP, Miao JL, Zhang ZY, Xiong HY, Zhu XY, Sun XM, Pan YH, Liang YT, Zhang Q, Abdul Rehman RM, Li JJ, Zhang HL, Li ZC. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnol J, 2018, 16(9): 1667-1678.
pmid: 29479793 |
[23] | Tian FK. Genetic studies and QTL mapping of yield- related traits in rice[Dissertation]. Hangzhou Normal University, 2013. |
田福宽. 水稻产量相关性状的遗传研究和QTL定位[学位论文]. 杭州师范大学, 2013. | |
[24] |
Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112(6): 1164-1171.
pmid: 16453132 |
[25] |
Sun HY, Qian Q, Wu K, Luo JJ, Wang SS, Zhang CW, Ma YF, Liu Q, Huang XZ, Yuan QB, Han RX, Zhao M, Dong GJ, Guo LB, Zhu XD, Gou ZH, Wang W, Wu YJ, Lin HX, Fu XD. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, 46(6): 652-656.
pmid: 24777451 |
[26] |
Zhang XJ, Wang JF, Huang J, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, Qian Q, Li JY, Zhang HS. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA, 2012, 109(52): 21534-21539.
pmid: 23236132 |
[27] |
Choi BS, Kim YJ, Markkandan K, Koo YJ, Song JT, Seo HS. GW2 functions as an E3 ubiquitin ligase for rice Expansin-Like 1. Int J Mol Sci, 2018, 19(7): 1904.
pmid: 29958473 |
[28] |
Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39(5): 623-630.
pmid: 17417637 |
[29] |
Duan PG, Xu JS, Zeng DL, Zhang BL, Geng MF, Zhang GZ, Huang K, Huang LJ, Xu R, Ge S, Qian Q, Li YH. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant, 2017, 10(5): 685-694.
pmid: 28366824 |
[30] |
Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3: 17043.
pmid: 28394310 |
[31] |
Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43(12): 1266-1269.
pmid: 22019783 |
[32] |
Che RH, Tong HN, Shi BH, Liu YQ, Fang SR, Liu DP, Xiao YH, Hu B, Liu LC, Wang HR, Zhao MF, Chu CC. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants, 2015, 2: 15195.
pmid: 27250747 |
[33] |
Duan PG, Ni S, Wang JM, Zhang BL, Xu R, Wang YX, Chen HQ, Zhu XD, Li YH. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
pmid: 27250749 |
[34] |
Hu J, Wang YX, Fang YX, Zeng LJ, Xu J, Yu HP, Shi ZY, Pan JJ, Zhang D, Kang SJ, Zhu L, Dong GJ, Guo LB, Zeng DL, Zhang GH, Xie LH, Xiong GS, Li JY, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8(10): 1455-1465.
pmid: 26187814 |
[35] |
Si LZ, Chen JY, Huang XH, Gong H, Luo JH, Hou QQ, Zhou TY, Lu TT, Zhu JJ, Shangguan YY, Chen EW, Gong CX, Zhao Q, Jing YF, Zhao Y, Li Y, Cui LL, Fan DL, Lu YQ, Weng QJ, Wang YC, Zhan QL, Liu KY, Wei XH, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48(4): 447-456.
pmid: 26950093 |
[36] |
Wang SK, Li S, Liu Q, Wu K, Zhang JQ, Wang SS, Wang Y, Chen XB, Zhang Y, Gao CX, Wang F, Huang HX, Fu XD. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47(8): 949-954.
pmid: 26147620 |
[37] |
Wang SK, Wu K, Yuan QB, Liu XY, Liu ZB, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012, 44(8): 950-954.
pmid: 22729225 |
[38] |
Wang YX, Xiong GS, Hu J, Jiang L, Yu H, Xu J, Fang YX, Zeng LJ, Xu EB, Xu J, Ye WJ, Meng XB, Liu RF, Chen HQ, Jing YH, Wang YH, Zhu XD, Li JY, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47(8): 944-948.
pmid: 26147619 |
[39] |
Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc, 2006, 1(5): 2320-2325.
pmid: 17406474 |
[40] |
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30(2): 174-178.
pmid: 22267009 |
[41] |
Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang LW, Gao JP, Lin HX. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012, 22(12): 1666-1680.
pmid: 23147796 |
[1] | 郭海滨, 刘炜哲, 闭耀涛, 王海瞳, 缪文沁, 时睿浛, 刘向东. 水稻中胚轴伸长研究:种质挖掘、遗传机理与育种展望[J]. 遗传, 2025, 47(7): 742-755. |
[2] | 郭念, 王辰杰, 李钊, 韩囡囡, 周晨, 王凯迎, 黄科, 潘咏清, 李英洁, 李云海. 水稻窄长粒突变体nlg1的筛选及候选基因鉴定[J]. 遗传, 2025, 47(6): 672-680. |
[3] | 王占春, 钟桂涛, 张贝贝, 谢怡琳, 唐定中, 王伟. 水稻稻瘟病抗性基因研究进展[J]. 遗传, 2025, 47(5): 533-545. |
[4] | 吴岳阳, 周小燕, 吴玉峰, 黄驹. NMD途径功能缺陷对水稻表型及转录组的影响[J]. 遗传, 2024, 46(7): 540-551. |
[5] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[6] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[7] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[8] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[9] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[10] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[11] | 王翠玲, 刘信燚, 王亚会, 张争, 王治东, 周钢桥. MCM2通过抑制p53信号通路促进胆管癌细胞的增殖、迁移和侵袭[J]. 遗传, 2022, 44(3): 230-244. |
[12] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[13] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[14] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[15] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: