遗传 ›› 2015, Vol. 37 ›› Issue (3): 221-232.doi: 10.16288/j.yczz.14-327
• 综述 • 下一篇
陈晓颖,叶华丹,洪青晓,周安楠,汤琳琳,段世伟
收稿日期:
2014-09-29
修回日期:
2014-12-18
出版日期:
2015-03-20
发布日期:
2015-02-10
通讯作者:
段世伟,博士,研究员,研究方向:遗传学。E-mail: duanshiwei@nbu.edu.cn
E-mail:cxywzmc@163.com
作者简介:
陈晓颖,硕士研究生,专业方向:遗传学。E-mail: cxywzmc@163.com
基金资助:
Xiaoying Chen, Huadan Ye, Qingxiao Hong, Annan Zhou, Linlin Tang, Shiwei Duan
Received:
2014-09-29
Revised:
2014-12-18
Online:
2015-03-20
Published:
2015-02-10
摘要: 自稳态平衡是机体生命活动的重要基础,在维持机体的正常生理功能中发挥重要作用。血管疾病中的稳态失衡受物理、化学、生物等内外环境改变及致病因素的影响,其中氧稳态、血流稳态、糖脂代谢稳态在内环境的影响中较为突出,由此引起的一系列表观遗传修饰将导致血管结构和功能的异常。表观遗传学中的DNA甲基化与血管疾病的发生发展密不可分。此外,5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)及N6-甲基腺嘌呤(N6-methyladenine, m6A)作为新的修饰碱基,将为表观遗传学研究提供新的思路。文章主要对DNA甲基化修饰变异在血管疾病稳态失衡方面的研究进展进行了阐述。
陈晓颖, 叶华丹, 洪青晓, 周安楠, 汤琳琳, 段世伟. DNA甲基化修饰对血管疾病稳态失衡的影响[J]. 遗传, 2015, 37(3): 221-232.
Xiaoying Chen, Huadan Ye, Qingxiao Hong, Annan Zhou, Linlin Tang, Shiwei Duan. The effects of DNA methylation on the homeostasis in vascular diseases[J]. HEREDITAS(Beijing), 2015, 37(3): 221-232.
[1] Rader DJ, Parmacek MS. Secreted miRNAs suppress atherogenesis. Nat Cell Biol , 2012, 14(3): 233-235. [2] Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H. Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med , 2008, 205(9): 2053-2063. [3] Capra V, Bäck M, Angiolillo DJ, Cattaneo M, Sakariassen KS. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J Thromb Haemost , 2014, 12(2): 126-137. [4] Tsang H, Leiper J, Lao KH, Dowsett L, Delahaye MW, Barnes G, Wharton J, Howard L, Iannone L, Lang NN, Wilkins MR, Wojciak-Stothard B. Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function. Pulm Circ , 2013, 3(3): 675-691. [5] Wang YT, Liu HZ, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF, Hunt NH, Stocker R. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med , 2010, 16(3): 279-285. [6] Maron BA, Tang SS, Loscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal , 2013, 18(3): 270-287. [7] Marvar PJ, Gordon FJ, Harrison DG. Blood pressure control: salt gets under your skin. Nat Med , 2009, 15(5): 487-488. [8] Li SY, Sun Y, Qi XD, Shi Y, Gao H, Wu Q, Liu XC, Yu HT, Zhang CJ. Protective effect and mechanism of glutaredoxin 1 on coronary arteries endothelial cells damage induced by high glucose. Biomed Mater Eng , 2014, 24(6): 3897-3903. [9] Millis RM. Epigenetics and hypertension. Curr Hypertens Rep , 2011, 13(1): 21-28. [10] Liu J, Yao ST, Zhai L, Feng YL, Song GH, Yu Y, Zhu P, Qin SC. Ox-LDL down-regulates expression of pigment epithelium-derived factor in human umbilical vein endothelial cells. Acta Phys Sin , 2014, 66(4): 489-495. [11] Liang Y, Yang XL, Ma LN, Cai X, Wang L, Yang C, Li GZ, Zhang MH, Sun WW, Jiang YD. Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells. Acta Biochim Biophys Sin , 2013, 45(3): 220-228. [12] Leonard A, Paton AW, El-Quadi M, Paton JC, Fazal F. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation. PLoS One , 2014, 9(10): e110949. [13] Hu SS, Zhang HG, Zhang QJ, Xiu RJ. CD51 + endothelial microparticles as a biomarker of endothelial dysfunction in obese patients with hypertension. Endocrine , 2014, doi:10.1007/s12020-014-0423-7. [14] Liu RJ, Jin Y, Tang WH, Qin LF, Zhang XB, Tellides G, Hwa J, Yu J, Martin KA. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation , 2013, 128(18): 2047-2057. [15] Ning YY, Huang HD, Dong YC, Sun QY, Zhang W, Xu WJ, Li Q. 5-Aza-2’-deoxycytidine inhibited PDGF-induced rat airway smooth muscle cell phenotypic switching. Arch Toxicol , 2013, 87(5): 871-881. [16] 韩萨茹拉, 高爱琴, 李金泉, 张燕军, 梅步俊. 成纤维细胞生长因子(FGF)研究进展. 安徽农业科学, 2009, 37(7): 3008-3010. [17] Liu XQ, Zhao Y, Gao JG, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li TS. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet , 2004, 36(2): 178-182. [18] Chester AH, Yacoub MH. The role of endothelin-1 in pulmonary arterial hypertension. Glob Cardiol Sci Pract , 2014, 2014(2): 62-78. [19] Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res , 2010, 107(7): 839-850. [20] Nanduri J, Makarenko V, Reddy VD, Yuan GX, Pawar A, Wang N, Khan SA, Zhang X, Kinsman B, Peng YJ, Kumar GK, Fox AP, Godley LA, Semenza GL, Prabhakar NR. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci USA , 2012, 109(7): 2515-2520. [21] Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell , 2012, 148(3): 399-408. [22] Jacob A, Potin S, Saubaméa B, Crete D, Scherrmann JM, Curis E, Peyssonnaux C, Declèves X. Hypoxia interferes with aryl hydrocarbon receptor pathway in hCMEC/D3 human cerebral microvascular endothelial cells. J Neurochem , 2014, doi:10.1111/jnc.12972. [23] Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E, Keshet E. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature , 1998, 394(6692): 485-490. [24] 盛娓娓, 黄晶. 缺氧诱导血管新生机制的研究进展. 心血管病学进展, 2008, 29(5): 760-763. [25] Van Eck M. ATP-binding cassette transporter A1: key player in cardiovascular and metabolic disease at local and systemic level. Curr Opin Lipidol , 2014, 25(4): 297-303. [26] Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JGN, Semenza GL. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood , 2005, 105(2): 659-669. [27] Conway DE, Schwartz MA. Flow-dependent cellular mechanotransduction in atherosclerosis. J Cell Sci , 2013, 126(Pt 22): 5101-5109. [28] Ishibazawa A, Nagaoka T, Yokota H, Ono S, Yoshida A. Low shear stress up-regulation of proinflammatory gene expression in human retinal microvascular endothelial cells. Exp Eye Res , 2013, 116: 308-311. [29] 杨琼, 武春艳, 江璐, 刘录山. 剪切应力-内皮细胞-Caveolin-1信号通路在动脉粥样硬化中的作用. 中国动脉硬化杂志, 2009, 17(3): 237-240. [30] Kowluru RA, Kennedy A. Therapeutic potential of anti-oxidants and diabetic retinopathy. Expert Opin Investig Drugs , 2001, 10(9): 1665-1676. [31] Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal , 2005, 7(11-12): 1581-1587. [32] Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation , 2014, 129(15): 1551-1559. [33] Heloterä H, Alitalo K. The VEGF family, the inside story. Cell , 2007, 130(4): 591-592. [34] Paik JH, Kollipara R, Chu G, Ji HK, Xiao YH, Ding ZH, Miao LL, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell , 2007, 128(2): 309-323. [35] Santoro MM, Samuel T, Mitchell T, Reed JC, Stainier DYR. Birc2 (cIap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet , 2007, 39(11): 1397-1402. [36] Chen YQ, Zhao SP, Xiang R. RTN3 and RTN4: Candidate modulators in vascular cell apoptosis and atherosclerosis. J Cell Biochem , 2010, 111(4): 797-800. [37] Kang DH, Lee DJ, Lee KW, Park YS, Lee JY, Lee SH, Koh YJ, Koh GY, Choi C, Yu DY, Kim J, Kang SW. Peroxiredoxin Ⅱ is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol Cell , 2011, 44(4): 545-558. [38] Yan MH, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K, Plowman GD. Chronic DLL4 blockade induces vascular neoplasms. Nature , 2010, 463(7282): E6-E7. [39] Chang SR, Young BD, Li SJ, Qi XX, Richardson JA, Olson EN. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell , 2006, 126(2): 321-334. [40] Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM. Emilin1 links TGF-β maturation to blood pressure homeostasis. Cell , 2006, 124(5): 929-942. [41] Raman M, Cobb MH. TGF-β regulation by Emilin1: new links in the etiology of hypertension. Cell , 2006, 124(5): 893-895. [42] Lakshmi SVV, Naushad SM, Reddy CA, Saumya K, Rao DS, Kotamraju S, Kutala VK. Oxidative stress in coronary artery disease: epigenetic perspective. Mol Cell Biochem , 2013, 374(1-2): 203-211. [43] Komatsu M, Ruoslahti E. R-Ras is a global regulator of vascular regeneration that suppresses intimal hyperplasia and tumor angiogenesis. Nat Med , 2005, 11(12): 1346-1350. [44] Berthe MC, Bernard M, Rasmusen C, Darquy S, Cynober L, Couderc R. Arginine or citrulline associated with a statin stimulates nitric oxide production in bovine aortic endothelial cells. Eur J Pharmacol , 2011, 670(2-3): 566-570. [45] Bird A. DNA methylation patterns and epigenetic memory. Genes Dev , 2002, 16(1): 6-21. [46] Koukoura O, Sifakis S, Spandidos DA. DNA methylation in the human placenta and fetal growth (review). Mol Med Rep , 2012, 5(4): 883-889. [47] Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, Ramírez-Ruz J, Gomez A, Gonçalves I, Moran S, Esteller M. A DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet , 2014, 7(5): 692-700. [48] Lund G, Andersson L, Lauria M, Lindholm M, Fraga MF, Villar-Garea A, Ballestar E, Esteller M, Zaina S. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem , 2004, 279(28): 29147-29154. [49] Krause BJ, Costello PM, Muñoz-Urrutia E, Lillycrop KA, Hanson MA, Casanello P. Role of DNA methyltransferase 1 on the altered eNOS expression in human umbilical endothelium from intrauterine growth restricted fetuses. Epigenetics , 2013, 8(9): 944-952. [50] Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann A, Sharaf O, Baugh JA. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet , 2014, 23(8): 2176-2188. [51] Jiang YZ, Jiménez JM, Ou K, McCormick ME, Zhang LD, Davies PF. Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo . Circ Res , 2014, 115(1): 32-43. [52] Dunn J, Qiu HW, Kim S, Jjingo D, Hoffman R, Kim CW, Jang I, Son DJ, Kim D, Pan CY, Fan YH, Jordan IK, Jo H. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest , 2014, 124(7): 3187-3199. [53] Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes , 2009, 58(12): 2718-2725. [54] 权媛, 钱民章. 胆固醇通过NADPH氧化酶诱导ROS升高, NF-κB活化进而导致内皮细胞损伤. 中国病理生理杂志, 2010, 26(8): 1521-1526. [55] Kumar A, Kumar S, Vikram A, Hoffman TA, Naqvi A, Lewarchik CM, Kim Y-R, Irani K. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol , 2013, 33(8): 1936-1942. [56] Kinney SRM, Pradhan S. Ten eleven translocation enzymes and 5-hydroxymethylation in mammalian development and cancer. Adv Exp Med Biol , 2013, 754: 57-79. [57] Piccolo FM, Bagci H, Brown KE, Landeira D, Soza-Ried J, Feytout A, Mooijman D, Hajkova P, Leitch HG, Tada T, Kriaucionis S, Dawlaty MM, Jaenisch R, Merkenschlager M, Fisher AG. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol Cell , 2013, 49(6): 1023-1033. [58] Guibert S, Weber M. Functions of DNA methylation and hydroxymethylation in mammalian development. Curr Top Dev Biol , 2013, 104: 47-83. [59] Kato T, Iwamoto K. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology , 2014, 80: 133-139. [60] Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet , 2012, 13(1): 7-13. [61] Dalton SR, Bellacosa A. DNA demethylation by TDG. Epigenomics , 2012, 4(4): 459-467. [62] Ponnaluri VKC, Maciejewski JP, Mukherji M. A mechanistic overview of TET-mediated 5-methylcytosine oxidation. Biochem Biophys Res Commun , 2013, 436(2): 115-120. [63] Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol , 2011, 29(1): 68-72. [64] Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature , 2010, 466(7310): 1129-1133. [65] Li WW, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids , 2011, 2011: Article ID 870726. [66] Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell , 2012, 149(7): 1635-1646. [67] Niu YM, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N 6 -methyl-adenosine (m 6 A) in RNA: an old modification with a novel epigenetic function. Genom, Proteom Bioinform , 2013, 11(1): 8-17. [68] Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, Yi CQ, Lindahl T, Pan T, Yang YG, He C. N 6 -methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol , 2011, 7(12): 885-887. [69] Zheng GQ, Dahl JA, Niu YM, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu ZK, Bosmans RPG, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia GF, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell , 2013, 49(1): 18-29. [70] Li DY, Delaney JC, Page CM, Yang XD, Chen AS, Wong C, Drennan CL, Essigmann JM. Exocyclic carbons adjacent to the N 6 of adenine are targets for oxidation by the Escherichia coli adaptive response protein AlkB. J Am Chem Soc , 2012, 134(21): 8896-8901. [71] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature , 2012, 485(7397): 201-206. [72] Napoli C, Crudele V, Soricelli A, Al-Omran M, Vitale N, Infante T, Mancini FP. Primary prevention of atherosclerosis: a clinical challenge for the reversal of epigenetic mechanisms? Circulation , 2012, 125(19): 2363-2373. [73] Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol Elmsford N , 2005, 20(3): 345-352. [74] Huang YS, Zhi YF, Wang SR. Hypermethylation of estrogen receptor-α gene in atheromatosis patients and its correlation with homocysteine. Pathophysiol , 2009, 16(4): 259-265. [75] Zhu SK, Goldschmidt-Clermont PJ, Dong CM. Inactivation of monocarboxylate transporter MCT3 by DNA methylation in atherosclerosis. Circulation , 2005, 112(9): 1353-1361. [76] Friso S, Lotto V, Choi SW, Girelli D, Pinotti M, Guarini P, Udali S, Pattini P, Pizzolo F, Martinelli N, Corrocher R, Bernardi F, Olivieri O. Promoter methylation in coagulation F7 gene influences plasma FⅦ concentrations and relates to coronary artery disease. J Med Genet , 2012, 49(3): 192-199. [77] Zelko IN, Mueller MR, Folz RJ. CpG methylation attenuates Sp1 and Sp3 binding to the human extracellular superoxide dismutase promoter and regulates its cell-specific expression. Free Radic Biol Med , 2010, 48(7): 895-904. [78] Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol , 2005, 175(6): 3846-3861. [79] Jia L, Zhu L, Wang JZ, Wang XJ, Chen JZ, Song L, Wu YJ, Sun K, Yuan ZY, Hui RT. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis , 2013, 228(2): 346-352. [80] Connelly JJ, Cherepanova OA, Doss JF, Karaoli T, Lillard TS, Markunas CA, Nelson S, Wang T, Ellis PD, Langford CF, Haynes C, Seo DM, Goldschmidt-Clermont PJ, Shah SH, Kraus WE, Hauser ER, Gregory SG. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet , 2013, 22(25): 5107-5120. [81] Yang TC, Chen YJ, Chang SF, Chen CH, Chang PY, Lu SC. Malondialdehyde mediates oxidized LDL- induced coronary toxicity through the Akt-FGF2 pathway via DNA methylation. J Biomed Sci , 2014, 21: 11. [82] Liu C, Xu DW, Sjöberg J, Forsell P, Björkholm M, Claesson HE. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Exp Cell Res , 2004, 297(1): 61-67. [83] Zawadzki C, Chatelain N, Delestre M, Susen S, Quesnel B, Juthier F, Jeanpierre E, Azzaoui R, Corseaux D, Breyne J, Torpier G, Staels B, Van Belle E, Jude B. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis , 2009, 204(2): e4-e14. [84] Nuyt AM, Szyf M. Developmental programming through epigenetic changes. Circ Res , 2007, 100(4): 452-455. [85] 姜怡邓, 张建中, 黄英, 苏娟, 张敬各, 王丽珍, 韩晓群, 王树人. 高半胱氨酸在平滑肌细胞中介导DNA甲基化及机制的研究. 生物化学与生物物理进展, 2007, 34(5): 479-489. [86] Lee HA, Baek I, Seok YM, Yang EY, Cho HM, Lee DY, Hong SH, Kim IK. Promoter hypomethylation upregulates Na + -K + -2Cl - cotransporter 1 in spontaneously hypertensive rats. Biochem Biophys Res Commun , 2010, 396(2): 252-257. [87] 张扬, 邹晓译, 刘双江, 孙强, 丁丽君, 郝佳, 赵君. PPARγ C161→T、α-内收蛋白Gly460Trp基因多态性与原发性高血压的关系. 疑难病杂志, 2014, 13(6): 563-566. [88] Noer A, Boquest AC, Collas P. Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol , 2007, 8: 18. [89] Noer A, Sørensen AL, Boquest AC, Collas P. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol Biol Cell , 2006, 17(8): 3543-3556. [90] Rivière G, Lienhard D, Andrieu T, Vieau D, Frey BM, Frey FJ. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics , 2011, 6(4): 478-489. [91] Senanayake GVK, Banigesh A, Wu LY, Lee P, Juurlink BHJ. The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens , 2012, 25(2): 229-235. [92] Liu Y, Liu PY, Yang C, Cowley AW, Liang MY. Base-resolution maps of 5-methylcytosine and 5-hydroxymethylcytosine in Dahl S rats: effect of salt and genomic sequence. Hypertension , 2014, 63(4): 827-838. [93] 魏艳. P53基因启动子区甲基化状态与缺血性脑卒中的相关性研究[学位论文]. 济南: 山东大学, 2012. [94] Kelly PJ, Rosand J, Kistler JP, Shih VE, Silveira S, Plomaritoglou A, Furie KL. Homocysteine, MTHFR 677C→T polymorphism, and risk of ischemic stroke: results of a meta-analysis. Neurology , 2002, 59(4): 529-536. [95] Hu CJ, Chen SD, Yang DI, Lin TN, Chen CM, Huang THM, Hsu CY. Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells. J Cereb Blood Flow Metab , 2006, 26(12): 1519-1526. [96] Trégouet DA, Groop PH, McGinn S, Forsblom C, Hadjadj S, Marre M, Parving HH, Tarnow L, Telgmann R, Godefroy T, Nicaud V, Rousseau R, Parkkonen M, Hoverfält A, Gut I, Heath S, Matsuda F, Cox R, Kazeem G, Farrall M, Gauguier D, Brand-Herrmann SM, Cambien F, Lathrop M, Vionnet N, EURAGEDIC Consortium. G/T substitution in intron 1 of the UNC13B gene is associated with increased risk of nephropathy in patients with type 1 diabetes. Diabetes , 2008, 57(10): 2843-2850. [97] Huang N, Tan L, Xue ZG, Cang J, Wang H. Reduction of DNA hydroxymethylation in the mouse kidney insulted by ischemia reperfusion. Biochem Biophys Res Commun , 2012, 422(4): 697-702. [98] Zeng HH, Kong XL, Peng H, Chen Y, Cai S, Luo H, Chen P. Apoptosis and Bcl-2 family proteins, taken to chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci , 2012, 16(6): 711-727. [99] Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature , 2005, 438(7070): 960-966. [100] Safi SZ, Qvist R, Yan GOS, Ismail ISB. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells. BMC Med Genomics , 2014, 7: 29. |
[1] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[2] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[3] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[4] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[5] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[6] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[7] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[8] | 刘姝丽,张胜利,俞英. 同卵双胞胎在复杂性状DNA甲基化调控机制研究中的应用[J]. 遗传, 2016, 38(12): 1043-1055. |
[9] | 刘洋洋, 崔恒宓. DNA甲基化分析中重亚硫酸盐处理DNA转化效率的评估方法[J]. 遗传, 2015, 37(9): 939-944. |
[10] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
[11] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[12] | 张君, 张望强, 丁毓磊, 许彭, 王婷婷, 徐文静, 陆环, 刘宗智, 谢建新. 腹部脂肪组织APN基因DNA甲基化及mRNA表达与维吾尔族T2DM的相关性[J]. 遗传, 2015, 37(3): 269-275. |
[13] | 李红东,洪贵妮,郭政. 外周全血中与老化相关的DNA甲基化标记的来源[J]. 遗传, 2015, 37(2): 165-173. |
[14] | 杨文旭, 潘虹. MeCP2在Rett综合征中的调控机制[J]. 遗传, 2014, 36(7): 625-630. |
[15] | 陈琦, 李少伟, 贾宇臣, 王利. 蓝莓花青素通过下调p53基因DNA甲基化抑制口腔癌KB细胞增殖及诱导细胞凋亡[J]. 遗传, 2014, 36(6): 566-573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: