[1] Oro AE, Scott MP. Splitting hairs: dissecting roles of signalling systems in epidermal development. Cell , 1998, 95(5): 575-578. [2] Hardy MH. The secret life of the hair follicle. Trends Genet , 1992, 8(2): 55-61. [3] Galbraith H. Fundamental hair follicle biology and fine fibre production in animals. Animal , 2010, 4(9): 1490-1509. [4] Rogers GE. Biology of the wool follicle: An excursion into a unique tissue interaction system waiting to be re-discovered. Exp Dermatol , 2006, 15(12): 931-949. [5] 王宁, 荣恩光, 闫晓红. 毛囊发育与毛发生产研究进展. 东北农业大学学报, 2012, 43(9): 6-11. [6] Yang CC, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci , 2010, 57(1): 2-11. [7] Lien WH, Polak L, Lin MY, Lay K, Zheng DY, Fuchs E. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol , 2014, 16(2): 179-190. [8] Mardaryev AN, Ahmed MI, Vlahov NV, Fessing MY, Gill JH, Sharov AA, Botchkareva NV. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J , 2010, 24(10): 3869-3881. [9] Clavel C, Grisanti L, Zemla R, Rezza A, Barros R, Sennett R, Mazloom A, Chung CY, Cai XQ, Cai CL, Pevny L, Nicolis S, Ma’ayan A, Rendl M. Sox2 in the dermal papilla niche controls hair growth by fine tuning BMP signalling in differentiating hair shaft progenitors. Dev Cell , 2012, 23(5): 981-994. [10] Hwang J, Mehrani T, Millar SE, Morasso MI. Dlx3 is a crucial regulator of hair follicle differentiation and regeneration. Development , 2008, 135(18): 3149-3159. [11] Kurek D, Garinis GA, van Doorninck JH, van der Wees J, Grosveld FG. Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development , 2007, 134(2): 261-272. [12] Keyes BE, Segal JP, Heller E, Lien WH, Chang CY, Guo XY, Oristian DS, Zheng DY, Fuchs E. Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci USA , 2013, 110(51): E4950-E4959. [13] 吴萍. Notch信号通路与绒山羊绒毛生长的研究[学位论文]. 呼和浩特: 内蒙古农业大学, 2010. [14] Pispa J, Pummila M, Barke PA, Thesleff I, Mikkola ML. Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development. Hum Mol Genet , 2008, 17(21): 3380-3391. [15] de Schellenberger AA, Horland R, Rosowski M, Paus R, Lauster R, Lindner G. Cartilage oligomeric matrix protein (COMP) forms part of the connective tissue of normal human hair follicles. Exp Dermatol , 2011, 20(4): 361-366. [16] 蔡婷, 刘志红, 王志新, 赵濛, 俎红丽, 李金泉. miRNA在调控皮肤和毛囊发育中的作用. 遗传, 2013, 35(9): 1087-1094. [17] Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays , 2005, 27(3):247-261. [18] Sun FY, Wang JY, Pan QH, Yu YC, Zhang Y, Wan Y, Wang J, Li XY, Hong A. Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun , 2009, 380(3): 660-665. [19] Mecklenburg L, Tobin DJ, Muller-Rover S, Handjiski B, Wendt G, Peters EMJ, Pohl S, Moll I, Paus R. Active hair growth (anagen) is associated with angiogenesis. J Invest Dermatol , 2000, 114(5): 909-916. [20] Pedrioli DML, Karpanen T, Dabouras V, Jurisic G, van de Hoek G, Shin JW, Marino D, Kälin RE, Leidel S, Cinelli P, Schulte-Merker S, Brändli AW, Detmar M. miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo . Mol Cell Biol , 2010, 30(14): 3620-3634. [21] Zhu B, Xu T, Yuan JL, Guo XD, Liu DJ. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the Cashmere goat ( Capra hircus ). PLoS One , 2013, 8(9): e76282. [22] Zhang WG, Wang JH, Li JQ, Yashizawa M. A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. Omics , 2007, 11(4): 385-396. [23] Yuan C, Wang XL, Geng RQ, He XL, Qu L, Chen YL. Discovery of cashmere goat ( Capra hircus ) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genomics , 2013, 14: 511. [24] 常子丽. 皮肤毛囊基因调控网络的初建及其在绒山羊上的功能预测[学位论文]. 呼和浩特: 内蒙古农业大学, 2007. [25] Ahn SY, Pi LQ, Hwang ST, Lee WS. Effect of IGF-I on hair growth is related to the anti-apoptotic effect of IGF-I and up-regulation of PDGF-A and PDGF-B. Ann Dermatol , 2012, 24(1): 26-31. [26] Leishman E, Howard JM, Garcia GE, Miao Q, Ku AT, Dekker JD, Tucker H, Nguyen H. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development , 2013, 140(18): 3809-3818. [27] Panteleyev AA, Paus R, Christiano AM. Patterns of hairless (hr) gene expression in mouse hair follicle morphogenesis and cycling. Am J Pathol , 2000, 157(4): 1071-1079. [28] Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Sharov AA, Komarov PG, Maurer M, Gudkov AV, Gilchrest BA. p53 Involvement in the control of murine hair follicle regression. Am J Pathol , 2001, 158(6): 1913-1919. [29] 王琳. 褪黑激素对内蒙古绒山羊毛囊生长发育相关基因的影响[学位论文]. 呼和浩特: 内蒙古农业大学, 2014. [30] 刘斌. 绒山羊绒毛生长相关基因的筛选、鉴定和多态性分析[学位论文]. 呼和浩特: 内蒙古农业大学, 2012. [31] 吴江鸿. Hoxc13 基因在绒山羊皮肤中的表达规律及体外功能分析[学位论文]. 呼和浩特: 内蒙古农业大学, 2011. [32] 贺建宁, 刘鲁梅, 程明, 刘开东, 于维敏, 刘积凤, 赵金山, 柳楠. 敖汉细毛羊毛囊FGF10、FGF18和FGFR3基因差异表达的研究. 第六届全国动植物数量遗传学学术研讨会, 2014, 55. [33] Oro AE, Higgins K. Hair cycle regulation of Hedgehog signal reception. Develop Biol , 2003, 255(2): 238-248. [34] Grachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang AQ, Wilbert D, Patel RM, Ferris J, Diener J, Allen M, Lim S, Syu LJ, Verhaegen M, Dlugosz AA. Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest , 2011, 121(5): 1768-1781. [35] Brancaccio A, Minichiello A, Grachtchouk M, Antonini D, Sheng H, Parlato R, Dathan N, Dlugosz AA, Missero C. Requirement of the fork head gene Foxe1 , a target of sonic hedgehog signaling, in hair follicle morphogenesis. Hum Mol Genet , 2004, 13(21): 2595-2606. [36] Oda Y, Hu LZ, Bul V, Elalieh H, Reddy JK, Bikle DD. Coactivator MED1 ablation in keratinocytes results in hair-cycling defects and epidermal alternations. J Invest Dermatol , 2012, 132(4): 1075-1083. [37] Cui CY, Hashimoto T, Grivennikov SI, Piao YL, Nedospasov SA, Schlessinger D. Ectodysplasin regulates the lymphotoxin-β pathway for hair differentiation. Proc Natl Acad Sci USA , 2006, 103(24): 9142-9147. [38] Nagao K, Kobayashy T, Ohyama M, Akiyama H, Horiuchi K, Amagai M. Brief report: requirement of TACE/ADAM17 for hair follicle bulge niche establishment. Stem Cells , 2012, 30(8): 1781-1785. [39] Mardaryev AN, Meier N, Poterlowicz K, Sharov AA, Sharova TY, Ahmed MI, Rapisarda V, Lewis C, Fessing MY, Ruenger TM, Bhawan J, Werner S, Paus R, Botchkarev VA. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development , 2011, 138(22): 4843-4852. [40] Fantauzzo KA, Kurban M, Levy B, Christiano AM. Trps1 and its target gene Sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis. PLoS Genet , 2012, 8(11): e1003002. |