遗传 ›› 2010, Vol. 32 ›› Issue (8): 769-778.doi: 10.3724/SP.J.1005.2010.00769
赵丽霞1, 赵高平2, 周欢敏1, 2
收稿日期:
2009-10-27
修回日期:
2010-01-09
出版日期:
2010-08-20
发布日期:
2010-08-23
通讯作者:
周欢敏
E-mail:huanminzhou@263.net
ZHAO Li-Xia1, ZHAO Gao-Ping2, ZHOU Huan-Min 1, 2
Received:
2009-10-27
Revised:
2010-01-09
Online:
2010-08-20
Published:
2010-08-23
Contact:
ZHOU Huan-Min
E-mail:huanminzhou@263.net
摘要: DLK1-DIO3印记域定位于人14号染色体、小鼠12号染色体及绵羊18号染色体远端, 在真哺乳亚纲动物中印记保守。该印记域包含3个编码蛋白的父系表达基因Dlk1、Rtl1和Dio3以及若干大小不同的母系表达印记非编码RNA, 如miRNAs、snoRNAs 和大型非编码RNA Gtl2等。人和小鼠该印记域内印记基因剂量的改变将导致严重的表型异常甚至胚胎致死, 暗示正常的发育需要域内印记基因的正常表达。文章重点论述了哺乳动物DLK1-DIO3印记域的印记调控机制和域内印记基因及其功能的研究进展。
赵丽霞,赵高平,周欢敏. 哺乳动物印记域DLK1-DIO3的研究进展[J]. 遗传, 2010, 32(8): 769-778.
DIAO Li-Xia, DIAO Gao-Beng, ZHOU Huan-Min. Review on the genomic imprinting at the mammalian DLK1-DIO3 cluster[J]. HEREDITAS, 2010, 32(8): 769-778.
[1] Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2001, 2(1): 21–32. [2] Ferguson-Smith AC, Surani MA. Imprinting and the epi-genetic asymmetry between parental genomes. Science, 2001, 293(5532): 1086–1089. [3] Thorvaldsen JL, Bartolomei MS. SnapShot: imprinted gene clusters. Cell, 2007, 130(5): 958. [4] Charalambous M, da Rocha ST, Ferguson-Smith AC. Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes, 2007, 14(1): 3–12. [5] Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat Rev Neu-rosci, 2007, 8(11): 832–843. [6] Fahrenkrug SC, Freking BA, Smith TP. Genomic or-ganization and genetic mapping of the bovine PREF-1 gene. Biochem Biophys Res Commun, 1999, 264(3): 662–667. [7] Yang ZL, Cheng HC, Xia QY, Jiang CD, Deng CY, Li YM. Imprinting analysis of RTLI and DIO3 genes and their as-sociation with carcass traits in pigs. Agric Sci China, 2009, 8(5): 101–105. [8] Paulsen M, Takada S, Youngson NA, Benchaib M, Charlier C, Segers K, Georges M, Ferguson-Smith AC. Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res, 2001, 11(12): 2085–2094. [9] Da Rocha ST, Edwards CA, Ito M, Ogata T, Fergu-son-Smith AC. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet, 2008, 24(6): 306–316. [10] Cattanach BM, Rasberry C. Evidence of imprinting in-volving the distal region of Chr.12. Mouse Genome, 1993, 91(5): 858. [11] Kotzot D. Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprint-ing. Ann Genet, 2004, 47(3): 251–260. [12] Kagami M, Nishimura G, Okuyama T, Hayashidani M, Takeuchi T, Tanaka S, Ishino F, Kurosawa K, Ogata T. Segmental and full paternal isodisomy for chromosome 14 in three patients: narrowing the critical region and impli-cation for the clinical features. Am J Med Genet A, 2005, 138A(2): 127–132. [13] Georgiades P, Watkins M, Surani MA, Ferguson-Smith AC. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development, 2000, 127(21): 4719–4728. [14] Tevendale M, Watkins M, Rasberry C, Cattanach B, Ferguson-Smith AC. Analysis of mouse conceptuses with uniparental duplication/deficiency for distal chromosome 12: comparison with chromosome 12 uniparental disomy and implications for genomic imprinting. Cytogenet Genome Res, 2006, 113(1–4): 215–222. [15] Schuster-Gossler K, Simon-Chazottes D, Guenet JL, Zachgo J, Gossler A. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype. Mamm Genome, 1996, 7(1): 20–24. [16] Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A. The mouse Gtl2 gene is differentially ex-pressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as a RNA. Dev Dyn, 1998, 212(2): 214–228. [17] Schmidt JV, Matteson PG, Jones BK, Guan XJ, Tilghman SM. The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev, 2000, 14(16): 1997–2002. [18] Takada S, Tevendale M, Baker J, Georgiades P, Camp-bell E, Freeman T, Johnson MH, Paulsen M, Fergu-son-Smith AC. Delta-like and gtl2 are reciprocally ex-pressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr Biol, 2000, 10(18): 1135–1138. [19] Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Ka-neko-Ishino T, Ishino F. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells, 2000, 5(3): 211–220. [20] Kobayashi S, Wagatsuma H, Ono R, Ichikawa H, Ya-mazaki M, Tashiro H, Aisaka K, Miyoshi N, Kohda T, Ogura A, Ohki M, Kaneko-Ishino T, Ishino F. Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally ex-pressed imprinted genes closely located to the maternally expressed imprinted genes: mouse Meg3/Gtl2 and human MEG3. Genes Cells, 2000, 5(12): 1029–1037. [21] Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, Shaw G, Graves JA, Rogers J, SAVOIR consortium, Dunham I, Renfree MB, Ferguson-Smith AC. The evolution of the Dlk1-Dio3 imprinted domain in mammals. PLoS Biol, 2008, 6(6): 1292–1305. [22] Shirohzu H, Yokomine T, Sato C, Kato R, Toyoda A, Purbowasito W, Suda C, Mukai T, Hattori M, Okumura K, Sakaki Y, Sasaki H. A 210-kb segment of tandem re-peats and retroelements located between imprinted sub-domains of mouse distal chromosome 7. DNA Res, 2004, 11(5): 325–334. [23] Laborda J, Sausville EA, Hoffman T, Notario V. Dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. J Biol Chem, 1993, 268(6): 3817–3820. [24] Baladrón V, Ruiz-Hidalgo MJ, Nueda ML, Díaz-Guerra MJ, García-Ramírez JJ, Bonvini E, Gubina E, Laborda J. Dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res, 2005, 303(2): 343–359. [25] Nueda ML, Baladrón V, Sánchez-Solana B, Ballesteros MA, Laborda J. The EGF-like protein dlk1 inhibits notch signaling and potentiates adipogenesis of mesenchymal cells. J Mol Biol, 2007, 367(5): 1281–1293. [26] Laborda, J. The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol, 2000, 15(1): 119–129. [27] Carlsson C, Tornehave D, Lindberg K, Galante P, Bill-estrup N, Michelsen B, Larsson LI, Nielsen JH. Growth hormone and prolactin stimulate the expression of rat preadipocyte factor-1/delta-like protein in pancreatic islets: molecular cloning and expression pattern during development and growth of the endocrine pancreas. Endocri-nology, 1997, 138(9): 3940–3948. [28] Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol, 2002, 22(15): 5585–5592. [29] Lee K, Villena JA, Moon YS, Kim KH, Lee S, Kang C, Sul HS. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J Clin Invest, 2003, 111(4): 453–461. [30] Brandt J, Veith AM, Volff JN. A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes. Cytogenet Genome Res, 2005, 110(1–4): 307–317. [31] Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, Hino T, Suzuki-Migishima R, Kohda T, Ogura A, Ogata T, Yokoyama M, Kaneko-Ishino T, Ishino F. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet, 2008, 40(2): 243–248. [32] Fleming-Waddell JN, Olbricht GR, Taxis TM, White JD, Vuocolo T, Craig BA, Tellam RL, Neary MK, Cockett NE, Bidwell CA. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in Callipyge lambs. PLoS One, 2009, 4(10): 1–15. [33] Hernandez A, Park JP, Lyon GJ, Mohandas TK, St Germain DL. Localization of the type 3 iodothyronine deiodinase (DIO3) gene to human chromosome 14q32 and mouse chromosome 12F1. Genomics, 1998, 53(1): 119–121. [34] Galton VA, Martinez E, Hernandez A, St Germain EA, Bates JM, St Germain DL. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. J Clin Invest, 1999, 103(7): 979–987. [35] Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the matura-tion and function of the thyroid axis. J Clin Invest, 2006, 116(2): 476–484. [36] Tsai CE, Lin SP, Ito M, Takagi N, Takada S, Fergu-son-Smith AC. Genomic imprinting contributes to thyroid hormone metabolism in the mouse embryo. Curr Biol, 2002, 12(14): 1221–1226. [37] Yevtodiyenko A, Carr MS, Patel N, Schmidt JV. Analy-sis of candidate imprinted genes linked to Dlk1-Gtl2 using a congenic mouse line. Mamm Genome, 2002, 13(11): 633–638. [38] Hernandez A, Fiering S, Martinez E, Galton VA, St Germain D. The gene locus encoding iodothyronine deio-dinase type 3 (Dio3) is imprinted in the fetus and ex-presses antisense transcripts. Endocrinology, 2002, 143(11): 4483–4486. [39] Tierling S, Dalbert S, Schoppenhorst S, Tsai CE, Oliger S, Ferguson-Smith AC, Paulsen M, Walter J. High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics, 2006, 87(2): 225–235. [40] Cavaillé J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP. Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet, 2002, 11(13): 1527–1538. [41] Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP, Ferguson-Smith AC, Cavaillé J. Im-printed microRNA genes transcribed antisense to a recip-rocally imprinted retrotransposon-like gene. Nat Genet, 2003, 34(3): 261–262. [42] Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaillé J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res, 2004, 14(9): 1741–1748. [43] Bachellerie JP, Cavaillé J, Hüttenhofer A. The expanding snoRNA world. Biochimie, 2002, 84(8): 775–790. [44] Cavaillé J, Vitali P, Basyuk E, Hüttenhofer A, Bachel-lerie JP. A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a non-coding RNA gene in rats. J Biol Chem, 2001, 276(28): 26374–26383. [45] Runte M, Hüttenhofer A, Gross S, Kiefmann M, Hor-sthemke B, Buiting K. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet, 2001, 10(23): 2687–2700. [46] Gallagher RC, Pils B, Albalwi M, Francke U. Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am J Hum Genet, 2002, 71(3): 669–678. [47] Du T, Zamore PD. MicroPrimer: the biogenesis and function of microRNA. Development, 2005, 132(21): 4645–4652. [48] Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Co-etzee GA, Jones PA. Specific activation of microRNA- 127 with downregulation of the proto-oncogene BCL6 by chro-matin-modifying drugs in human cancer cells. Cancer Cell, 2006, 9(6): 435–443. [49] Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME. A brain-specific mi-croRNA regulates dendritic spine development. Nature, 2006, 439(7074): 283–289. [50] Kagami M, Sekita Y, Nishimura G, Irie M, Kato F, Okada M, Yamamori S, Kishimoto H, Nakayama M, Tanaka Y, Matsuoka K, Takahashi T, Noguchi M, Ta-naka Y, Masumoto K, Utsunomiya T, Kouzan H, Ko-matsu Y, Ohashi H, Kurosawa K, Kosaki K, Fergu-son-Smith AC, Ishino F, Ogata T. Deletions and epimu-tations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal UPD(14)-like phenotypes. Nat Genet, 2008, 40(2): 237–242. [51] Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J. Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet, 1996, 13(1): 91–94. [52] Kawahara M, Wu Q, Takahashi N, Morita S, Yamada K, Ito M, Ferguson-Smith AC, Kono T. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol, 2007, 25(9): 1045–1050. [53] Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature, 1993, 366(6453): 362–365. [54] Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y, Okano M, Li E, Nozaki M, Sa saki H. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell develop-ment in the mouse. Hum Mol Genet, 2007, 16(19): 2272–2280. [55] Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet, 2003, 35(1): 97–102. [56] Lin SP, Coan P, da Rocha ST, Seitz H, Cavaille J, Teng PW, Takada S, Ferguson-Smith AC. Differential regula-tion of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region. Development, 2007, 134(2): 417–426. [57] Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik W. Imprinting on dis-tal chromosome 7 in the placenta involves repressive his-tone methylation independent of DNA methylation. Nat Genet, 2004, 36(12): 1291–1295. [58] Yevtodiyenko A, Steshina EY, Farner SC, Levorse JM, Schmidt JV. A 178-kb BAC transgene imprints the mouse Gtl2 gene and localizes tissue-specific regulatory elements. Genomics, 2004, 84(2): 277–287. [59] Davis E, Caiment F, Tordoir X, Cavaillé J, Fergu-son-Smith A, Cockett N, Georges M, Charlier C. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol, 2005, 15(8): 743–749. [60] Cockett NE, Jackson SP, Shay TL, Farnir F, Berghmans S, Snowder GD, Nielsen DM, Georges M. Polar over-dominance at the ovine callipyge locus. Science, 1996, 273(5272): 236–238. [61] Charlier C, Segers K, Karim L, Shay T, Gyapay G, Cockett N, Georges M. The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nat Genet, 2001, 27(4): 367–369. [62] Davis E, Jensen CH, Schroder HD, Farnir F, Shay-Hadfield T, Kliem A, Cockett N, Georges M, Charlier C. Ectopic expression of DLK1 protein in skele-tal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr Biol, 2004, 14(20): 1858–1862. [63] Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G, Cattanach BM, Ferguson-Smith AC. Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. Hum Mol Genet, 2002, 11(1): 77–86. [64] Hore TA, Rapkins RW, Graves JA. Construction and evolution of imprinted loci in mammals. Trends Genet, 2007, 23(9): 440–448. |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[3] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[4] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[5] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[6] | 刘福林, 周瑾, 张蔚, 汪晖. 胎盘发育过程中的表观遗传学改变及其相关疾病[J]. 遗传, 2017, 39(4): 263-275. |
[7] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[8] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[9] | 吴瑜, 冯旭, 高岚, 焦保卫. 印记基因:发育中的重要调节因子[J]. 遗传, 2016, 38(6): 508-522. |
[10] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[11] | 李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉. 竞争性内源RNA的生物学功能及其调控[J]. 遗传, 2015, 37(8): 756-764. |
[12] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[13] | 杨峰, 易凡, 曹慧青, 梁子才, 杜权. 长链非编码RNA研究进展[J]. 遗传, 2014, 36(5): 456-468. |
[14] | 李灵, 宋旭. 长链非编码RNA在生物体中的调控作用[J]. 遗传, 2014, 36(3): 228-236. |
[15] | 樊春燕, 魏强, 郝志强, 李广林. miRNAs调控lincRNAs的生物信息学预测与功能分析[J]. 遗传, 2014, 36(12): 1226-1234. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: