遗传 ›› 2011, Vol. 33 ›› Issue (8): 857-869.doi: 10.3724/SP.J.1005.2011.00857
杜仁骞1,2, 金力1,2,3, 张锋1,2
收稿日期:
2011-04-07
修回日期:
2011-06-03
出版日期:
2011-08-20
发布日期:
2011-08-25
通讯作者:
张锋
E-mail:feng.fudan@gmail.com
基金资助:
国家自然科学基金项目(编号: 30890034, 31000552), 教育部新世纪优秀人才支持计划项目(编号: NCET-09-0322)和上海市浦江人才计划项目(编号: 10PJ1400300)资助
DU Ren-Qian1,2, JIN Li1,2,3, ZHANG Feng1,2
Received:
2011-04-07
Revised:
2011-06-03
Online:
2011-08-20
Published:
2011-08-25
摘要: 拷贝数变异(Copy number variation, CNV)是由基因组发生重排而导致的, 一般指长度为1 kb以上的基因组大片段的拷贝数增加或者减少, 主要表现为亚显微水平的缺失和重复。CNV是基因组结构变异(Structural variation, SV)的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism), 是人类疾病的重要致病因素之一。目前, 用来进行全基因组范围的CNV研究的方法有: 基于芯片的比较基因组杂交技术(array-based comparative genomic hybridization, aCGH)、SNP分型芯片技术和新一代测序技术。CNV的形成机制有多种, 并可分为DNA重组和DNA错误复制两大类。CNV可以导致呈孟德尔遗传的单基因病与罕见疾病, 同时与复杂疾病也相关。其致病的可能机制有基因剂量效应、基因断裂、基因融合和位置效应等。对CNV的深入研究, 可以使我们对人类基因组的构成、个体间的遗传差异、以及遗传致病因素有新的认识。
杜仁骞,金力,张锋. 基因组拷贝数变异及其突变机理与人类疾病[J]. 遗传, 2011, 33(8): 857-869.
DU Ren-Qian, JIN Li, ZHANG Feng. Copy number variations in the human genome: their mutational mechanisms and roles in diseases[J]. HEREDITAS, 2011, 33(8): 857-869.
[1] Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007, 449(7164): 851-861.[2] Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. Nature, 2010, 467(7319): 1061-1073.[3] Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature, 2009, 461(7265): 747-753.[4] Zhang F, Gu WL, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet, 2009, 10(1): 451-481.[5] 吴志俊, 金玮. 拷贝数变异: 基因组多样性的新形式. 遗传, 2009, 31(4): 339-347.[6] 何阳花, 俞英, 张沅. 拷贝数变异与疾病的关系及其在动物抗病育种中的应用前景. 遗传, 2008, 30(11): 1385-1391.[7] Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med, 2010, 61(1): 437-455.[8] Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C. Detection of large-scale variation in the human genome. Nat Genet, 2004, 36(9): 949-951.[9] Sebat J, Lakshmi BL, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M. Large-scale copy number polymorphism in the human genome. Science, 2004, 305(5683): 525-528.[10] Lupski JR, Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet, 2005, 1(6): e49.[11] Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet, 2009, 41(7): 849-853.[12] Lee JA, Carvalho CMB, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell, 2007, 131(7): 1235-1247.[13] McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, Altshuler DM. Common deletion polymorphisms in the human genome. Nat Genet, 2006, 38(1): 86-92.[14] Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen WW, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang FT, Zhang JJ, Zerjal T, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. Global variation in copy number in the human genome. Nature, 2006, 444(7118): 444-454.[15] Perry GH, Ben-Dor A, Tsalenko A, Sampas N, Rodriguez-Revenga L, Tran CW, Scheffer A, Steinfeld I, Tsang P, Yamada NA, Park HS, Kim JI, Seo JS, Yakhini Z, Laderman S, Bruhn L, Lee C. The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet, 2008, 82(3): 685-695.[16] McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, Shapero MH, de Bakker PIW, Maller JB, Kirby A, Elliott AL, Parkin M, Hubbell E, Webster T, Mei R, Veitch J, Collins PJ, Handsaker R, Lincoln S, Nizzari M, Blume J, Jones KW, Rava R, Daly MJ, Gabriel SB, Altshuler D. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet, 2008, 40(10): 1166-1174.[17] Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen ZT, Tanzer A, Saunders ACE, Chi JX, Yang FT, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M. Paired-end mapping reveals extensive structural variation in the human genome. Science, 2007, 318(5849): 420-426.[18] Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N, Bruhn L, Shendure J, Eichler EE. Diversity of human copy number variation and multicopy genes. Science, 2010, 330(6004): 641-646.[19] Bailey JA, Gu ZP, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE. Recent segmental duplications in the human genome. Science, 2002, 297(5583): 1003-1007.[20] Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet, 2002, 18(2): 74-82.[21] Carvalho CMB, Lupski JR. Copy number variation at the breakpoint region of isochromosome 17q. Genome Res, 2008, 18(11): 1724-1732.[22] Eichler EE, Clark RA, She XW. An assessment of the sequence gaps: unfinished business in a finished human genome. Nat Rev Genet, 2004, 5(5): 345-354.[23] Eichler EE, Nickerson DA, Altshuler D, Bowcock AM, Brooks LD, Carter NP, Church DM, Felsenfeld A, Guyer M, Lee C, Lupski JR, Mullikin JC, Pritchard JK, Sebat J, Sherry ST, Smith D, Valle D, Waterston RH. Completing the map of human genetic variation. Nature, 2007, 447(7141): 161-165.[24] Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tüzün E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA, Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn L, Olson MV, Kaul R, Smith DR, Eichler EE. Mapping and sequencing of structural variation from eight human genomes. Nature, 2008, 453(7191): 56-64.[25] Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet, 1998, 14(10): 417-422.[26] Shaw CJ, Lupski JR. Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet, 2004, 13(Spec 1): R57-R64.[27] Han K, Lee J, Meyer TJ, Remedios P, Goodwin L, Batzer MA. L1 recombination-associated deletions generate human genomic variation. Proc Natl Acad Sci USA, 2008, 105(49): 19366-19371.[28] Babcock M, Pavlicek A, Spiteri E, Kashork CD, Ioshikhes I, Shaffer LG, Jurka J, Morrow BE. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. Genome Res, 2003, 13(12): 2519-2532.[29] Sen SK, Han K, Wang JX, Lee J, Wang H, Callinan PA, Dyer M, Cordaux R, Liang P, Batzer MA. Human genomic deletions mediated by recombination between Alu elements. Am J Hum Genet, 2006, 79(1): 41-53.[30] Myers S, Freeman C, Auton A, Donnelly P, McVean G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet, 2008, 40(9): 1124-1129.[31] Jeffreys AJ, Neumann R, Panayi M, Myers S, Donnelly P. Human recombination hot spots hidden in regions of strong marker association. Nat Genet, 2005, 37(6): 601-606.[32] Lupski JR. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal. Genome Biol, 2004, 5(10): 242.[33] Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet, 2007, 39(Suppl. 7): S43-S47.[34] Turner DJ, Miretti M, Rajan D, Fiegler H, Carter NP, Blayney ML, Beck S, Hurles ME. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet, 2008, 40(1): 90-95.[35] Flores M, Morales L, Gonzaga-Jauregui C, Domínguez-Vidaña R, Zepeda C, Yañez O, Gutiérrez M, Lemus T, Valle D, Avila MC, Blanco D, Medina-Ruiz S, Meza K, Ayala E, García D, Bustos P, González V, Girard L, Tusie-Luna T, Dávila G, Palacios R. Recurrent DNA inversion rearrangements in the human genome. Proc Natl Acad Sci USA, 2007, 104(15): 6099-6106.[36] Lam KWG, Jeffreys AJ. Processes of copy-number change in human DNA: the dynamics of α-globin gene deletion. Proc Natl Acad Sci USA, 2006, 103(24): 8921-8927.[37] Lam KW, Jeffreys AJ. Processes of de novo duplication of human α-globin genes. Proc Natl Acad Sci USA, 2007, 104(26): 10950-10955.[38] Lieber MR, Lu HH, Gu JF, Schwarz K. Flexibility in the order of action and in the enzymology of the nuclease, polymerases, and ligase of vertebrate non-homologous DNA end joining: relevance to cancer, aging, and the immune system. Cell Res, 2008, 18(1): 125-133.[39] Lieber MR, Ma YM, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol, 2003, 4(9): 712-720.[40] Schwarz K, Ma YM, Pannicke U, Lieber MR. Human severe combined immune deficiency and DNA repair. Bioessays, 2003, 25(11): 1061-1070.[41] Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem, 2008, 283(1): 1-5.[42] Nobile C, Toffolatti L, Rizzi F, Simionati B, Nigro V, Cardazzo B, Patarnello T, Valle G, Danieli GA. Analysis of 22 deletion breakpoints in dystrophin intron 49. Hum Genet, 2002, 110(5): 418-421.[43] Shaw CJ, Lupski JR. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet, 2005, 116(1-2): 1-7.[44] Potocki L, Bi WM, Treadwell-Deering D, Carvalho CMB, Eifert A, Friedman EM, Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw C, Shi X, Weissenberger G, Withers M, Yatsenko SA, Zackai EH, Stankiewicz P, Lupski JR. Characterization of Potocki-Lupski syndrome (dup(17) (p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet, 2007, 80(4): 633-649.[45] Vissers LELM, Stankiewicz P, Yatsenko SA, Crawford E, Creswick H, Proud VK, de Vries BBA, Pfundt R, Marcelis CLM, Zackowski J, Bi W, van Kessel AG, Lupski JR, Veltman JA. Complex chromosome 17p rearrangements associated with low-copy repeats in two patients with congenital anomalies. Hum Genet, 2007, 121(6): 697-709.[46] Bauters M, van Esch H, Friez MJ, Boespflug-Tanguy O, Zenker M, Vianna-Morgante AM, Rosenberg C, Ignatius J, Raynaud M, Hollanders K, Govaerts K, Vandenreijt K, Niel F, Blanc P, Stevenson RE, Fryns JP, Marynen P, Schwartz CE, Froyen G. Nonrecurrent MECP2 duplications mediated by genomic architecture-driven DNA breaks and break-induced replication repair. Genome Res, 2008, 18(6): 847-858.[47] del Gaudio D, Fang P, Scaglia F, Ward PA, Craigen WJ, Glaze DG, Neul JL, Patel A, Lee JA, Irons M, Berry SA, Pursley AA, Grebe TA, Freedenberg D, Martin RA, Hsich GE, Khera JR, Friedman NR, Zoghbi HY, Eng CM, Lupski JR, Beaudet AL, Cheung SW, Roa BB. Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med, 2006, 8(12): 784-792.[48] Bi WM, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, Levy T, Shinder V, Peiffer DA, Gunderson KL, Nezarati MM, Shotts VA, Amato SS, Savage SK, Harris DJ, Day-Salvatore DL, Horner M, Lu XY, Sahoo T, Yanagawa Y, Beaudet AL, Cheung SW, Martinez S, Lupski JR, Reiner O. Increased LIS1 expression affects human and mouse brain development. Nat Genet, 2009, 41(2): 168-177.[49] Gilbert W. Why genes in pieces? Nature, 1978, 271(5645): 501.[50] Ohno S. Evolution by Gene Duplication. Berlin: Springer-Verlag, 1970.[51] Fu WQ, Zhang F, Wang Y, Gu X, Jin L. Identification of copy number variation hotspots in human populations. Am J Hum Genet, 2010, 87(4): 494-504.[52] Lejeune J, Gautier M, Turpin R. Etude des chromosomes somatiques de neuf enfants mongoliens. C R Acad Sci, 1959, 248(11): 1721-1722.[53] Higgs DR, Pressley L, Old JM, Hunt DM, Clegg JB, Weatherall DJ, Serjeant GR. Negro α-thalassaemia is caused by deletion of a single α-globin gene. Lancet, 1979, 2(8137): 272-276.[54] Nathans J, Thomas D, Hogness DS. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science, 1986, 232(4747): 193-202.[55] Nathans J, Piantanida TP, Eddy RL, Shows TB, Hogness DS. Molecular genetics of inherited variation in human color vision. Science, 1986, 232(4747): 203-210.[56] Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, Saucedo-Cardenas O, Barker DF, Killian JM, Garcia CA, Chakravarti A, Patel PI. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 1991, 66(2): 219-232.[57] Lupski JR, Wise CA, Kuwano A, Pentao L, Parke JT, Glaze DG, Ledbetter DH, Greenberg F, Patel PI. Gene dosage is a mechanism for Charcot-Marie-Tooth disease type 1A. Nat Genet, 1992, 1(1): 29-33.[58] Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, van Vooren S, Moreau Y, Pettett RM, Carter NP. DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet, 2009, 84(4): 524-533.[59] Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Sanges G, Stenroos ES, Pho LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science, 1996, 274(5290): 1197-1199.[60] Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K. α-Synuclein locus triplication causes Parkinson's disease. Science, 2003, 302(5646): 841.[61] Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, Cookson MR, Singleton AB. α-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology, 2004, 62(10): 1835-1838.[62] Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet, 2004, 364(9440): 1167-1169.[63] Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson EM, Schule B, Langston JW, Middleton FA, Ross OA, Hulihan M, Gasser T, Farrer MJ. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology, 2007, 68(12): 916-922.[64] Ibáñnez P, Bonnet AM, Débarges B, Lohmann E, Tison F, Pollak P, Agid Y, Dürr A, Brice A. Causal relation between α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet, 2004, 364(9440): 1169-1171.[65] Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E. Levels of α- and β-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci Lett, 2000, 278(3): 169-172.[66] Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991, 349(6311): 704-706.[67] Theuns J, Brouwers N, Engelborghs S, Sleegers K, Bogaerts V, Corsmit E, De Pooter T, van Duijn CM, De Deyn PP, van Broeckhoven C. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet, 2006, 78(6): 936-946.[68] Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerrière A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet, 2006, 38(1): 24-26.[69] de Vries BBA, Pfundt R, Leisink M, Koolen DA, Vissers LELM, Janssen IM, van Reijmersdal S, Nillesen WM, Huys EHLPG, de Leeuw N, Smeets D, Sistermans EA, Feuth T, van Ravenswaaij-Arts CMA, van Kessel AG, Schoenmakers EFPM, Brunner HG, Veltman JA. Diagnostic genome profiling in mental retardation. Am J Hum Genet, 2005, 77(4): 606-616.[70] Stankiewicz P, Beaudet AL. Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev, 2007, 17(3): 182-192.[71] Froyen G, Corbett M, Vandewalle J, Jarvela I, Lawrence O, Meldrum C, Bauters M, Govaerts K, Vandeleur L, van Esch H, Chelly J, Sanlaville D, van Bokhoven H, Ropers HH, Laumonnier F, Ranieri E, Schwartz CE, Abidi F, Tarpey PS, Futreal PA, Whibley A, Raymond FL, Stratton MR, Fryns JP, Scott R, Peippo M, Sipponen M, Partington M, Mowat D, Field M, Hackett A, Marynen P, Turner G, Gécz J. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am J Hum Genet, 2008, 82(2): 432-443.[72] Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, Vezzoni P, Larizza L. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet, 2006, 38(5): 528-530.[73] Lenski C, Kooy RF, Reyniers E, Loessner D, Wanders RJA, Winnepenninckx B, Hellebrand H, Engert S, Schwartz CE, Meindl A, Ramser J. The reduced expression of the HADH2 protein causes X-linked mental retardation, choreoathetosis, and abnormal behavior. Am J Hum Genet, 2007, 80(2): 372-377.[74] Carvalho CMB, Zhang F, Liu PF, Patel A, Sahoo T, Bacino CA, Shaw C, Peacock S, Pursley A, Tavyev YJ, Ramocki MB, Nawara M, Obersztyn E, Vianna-Morgante AM, Stankiewicz P, Zoghbi HY, Cheung SW, Lupski JR. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet, 2009, 18(12): 2188-2203.[75] van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M, Hollanders K, Lugtenberg D, Bienvenu T, Jensen LR, Gécz J, Moraine C, Marynen P, Fryns JP, Froyen G. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet, 2005, 77(3): 442-453.[76] Bailey A, Phillips W, Rutter M. Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiatry, 1996, 37(1): 89-126.[77] Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. Strong association of de novo copy number mutations with autism. Science, 2007, 316(5823): 445-449.[78] Naruse K, Ueno M, Satoh T, Nomiyama H, Tei H, Takeda M, Ledbetter DH, van Coillie E, Opdenakker G, Gunge N, Sakaki Y, Iio M, Miura R. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2. Genomics, 1996, 34(2): 236-240.[79] Menten P, Wuyts A, van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev, 2002, 13(6): 455-481.[80] Townson JR, Barcellos LF, Nibbs RJ. Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol, 2002, 32(10): 3016-3026.[81] Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O'Connell RJ, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science, 2005, 307(5714): 1434-1440.[82] Fellermann K, Wehkamp J, Herrlinger KR, Stange EF. Crohn's disease: a defensin deficiency syndrome? Eur J Gastroenterol Hepatol, 2003, 15(6): 627-634.[83] Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL, Reinisch W, Teml A, Schwab M, Lichter P, Radlwimmer B, Stange EF. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet, 2006, 79(3): 439-448.[84] Hollox EJ, Huffmeier U, Zeeuwen PLJM, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PC, Traupe H, de Jongh G, den Heijer M, Reis A, Armour JAL, Schalkwijk J. Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet, 2008, 40(1): 23-25.[85] Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, Martin SP, Gates LK Jr., Amann ST, Toskes PP, Liddle R, McGrath K, Uomo G, Post JC, Ehrlich GD. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet, 1996, 14(2): 141-145.[86] Sahin-Tóth M. Biochemical models of hereditary pancreatitis. Endocrinol Metab Clin North Am, 2006, 35(2): 303-312.[87] Le Maréchal C, Masson E, Chen JM, Morel F, Ruszniewski P, Levy P, Férec C. Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat Genet, 2006, 38(12): 1372-1374.[88] Aitman TJ, Dong R, Vyse TJ, Norsworthy PJ, Johnson MD, Smith J, Mangion J, Roberton-Lowe C, Marshall AJ, Petretto E, Hodges MD, Bhangal G, Patel SG, Sheehan-Rooney K, Duda M, Cook PR, Evans DJ, Domin J, Flint J, Boyle JJ, Pusey CD, Cook HT. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature, 2006, 439(7078): 851-855.[89] Fanciulli M, Norsworthy PJ, Petretto E, Dong R, Harper L, Kamesh L, Heward JM, Gough SCL, de Smith A, Blakemore AIF, Froguel P, Owen CJ, Pearce SHS, Teixeira L, Guillevin L, Graham DSC, Pusey CD, Cook HT, Vyse TJ, Aitman TJ. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet, 2007, 39(6): 721-723.[90] Willcocks LC, Lyons PA, Clatworthy MR, Robinson JI, Yang WL, Newland SA, Plagnol V, McGovern NN, Condliffe AM, Chilvers ER, Adu D, Jolly EC, Watts R, Lau YL, Morgan AW, Nash G, Smith KGC. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med, 2008, 205(7): 1573-1582.[91] Sun M, Li N, Dong W, Chen Z, Liu Q, Xu Y, He G, Shi Y, Li X, Hao J, Luo Y, Shang D, Lu D, Ma F, Zhang D, Hua R, Lu C, Wen Y, Cao L, Irvine AD, McLean WH, Dong Q, Wang MR, Yu J, He L, Lo WH, Zhang X. Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet, 2009, 84(6): 807-813.[92] Canún S, Guevara-Sanginés EG, Elvira-Morales A, Sierra-Romero Mdel C, Rodríguez-Asbun H. Hypertrichosis terminalis, gingival hyperplasia, and a characteristic face: a new distinct entity. Am J Med Genet A, 2003, 116A(3): 278-283.[93] Tanaka N, Kamanaka M, Enslen H, Dong C, Wysk M, Davis RJ, Flavell RA. Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep, 2002, 3(8): 785-791.[94] Suzuki H, Wu J, Hossain K, Ohhata T, Du J, Akhand AA, Hayakawa A, Kimura H, Hagiwara M, Nakashima I. Involvement of MKK6 in TCRαβ (int) CD69lo: a target population for apoptotic cell death in thymocytes. FASEB J, 2003, 17(11): 1538-1540.[95] Lupski JR, Chance PF. Hereditary motor and sensory neuropathies involving altered dosage or mutation of PMP22: the CMT1A duplication and HNPP deletion. In: Dyck PJ, Thomas PK, eds. Peripheral Neuropathy. Philadelphia: Elsevier, 2005: 1659-1680.[96] Chance PF, Alderson MK, Leppig KA, Lensch MW, Matsunami N, Smith B, Swanson PD, Odelberg SJ, Disteche CM, Bird TD. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell, 1993, 72(1): 143-151.[97] Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric 11β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature, 1992, 355(6357): 262-265. |
[1] | 姜义圣,许执恒. 脑发育疾病及发病机制[J]. 遗传, 2019, 41(9): 801-815. |
[2] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[3] | 赵学彤, 杨亚东, 渠鸿竹, 方向东. 组学时代下机器学习方法在临床决策支持中的应用[J]. 遗传, 2018, 40(9): 693-703. |
[4] | 黄耀强,李国玲,杨化强,吴珍芳. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646. |
[5] | 朱亚男, 敖英, 李斌, 万阳, 汪晖. 足细胞发育异常及相关肾脏疾病研究进展[J]. 遗传, 2018, 40(2): 116-125. |
[6] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[7] | 陈一欧, 宝颖, 马华峥, 伊宗裔, 周卓, 魏文胜. 基因编辑技术及其在中国的研究发展[J]. 遗传, 2018, 40(10): 900-915. |
[8] | 王永煜,余薇,周斌. Hippo信号通路与心血管发育及疾病调控[J]. 遗传, 2017, 39(7): 576-587. |
[9] | 周欣,李伟芸,王红艳. MST1/2调控先天免疫的功能和机制[J]. 遗传, 2017, 39(7): 642-649. |
[10] | 彭继苹,刘芳,谢华,陈晓丽. X染色体变异对男性精神发育迟滞致病性的研究进展[J]. 遗传, 2017, 39(6): 455-468. |
[11] | 李爽,杨圆圆,邱艳,陈彦好,徐璐薇,丁秋蓉. 基因组编辑技术在精准医学中的应用[J]. 遗传, 2017, 39(3): 177-188. |
[12] | 王建, 张凯翔, 芦国珍, 赵湘辉. 5-羟甲基胞嘧啶及其TET氧合酶在神经系统发育和相关疾病中的研究进展[J]. 遗传, 2017, 39(12): 1138-1149. |
[13] | 何一旻, 顾鸣敏. 肌球蛋白重链基因在人类遗传性疾病中的研究进展[J]. 遗传, 2017, 39(10): 877-887. |
[14] | 孙吉吉, 赵晓旭, 乔丽华, 梅霜, 聂志鹏, 张青海, 冀延春, 蒋萍萍, 管敏鑫. 线粒体遗传疾病细胞模型的构建:永生淋巴细胞系和转线粒体细胞系[J]. 遗传, 2016, 38(7): 666-673. |
[15] | 刘芳, 宋小珍, 谢华, 陈晓丽. 体细胞变异对神经系统常见肿瘤和发育异常类疾病的致病性[J]. 遗传, 2016, 38(3): 196-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: