[1] Ellaiah P, Adinarayana K, Chand GM, Subramanyam GS, Srinivasulu B. Strain improvement studies for cepha-losporin C production by Cephalosporium acremonium. Pharmazie, 2002, 57(7): 489-490.[2] Ellaiah P, Kumar JP, Saisha V, Sumitra JJ, Vaishali P. Strain improvement studies on production of cepha-losporin C from Acremonium chrysogenum ATCC 48272. Hindustan Antibiot Bull, 2003, 45-46(1-4): 11-15.[3] Lee MS, Lim JS, Kim CH, Oh KK, Yang DR, Kim SW. Enhancement of cephalosporin C production by cultiva-tion of Cephalosporium acremonium M25 using a mixture of inocula. Lett Appl Microbiol, 2001, 32(6): 402-406.[4] Gutiérrez S, Díez B, Montenegro E, Martin JF. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol, 1991, 173(7): 2354-2365.[5] Martín JF, Ullán RV, Casqueiro J. Novel genes involved in cephalosporin biosynthesis: the three-component isopeni-cillin N epimerase system. Adv Biochem Eng Biotechnol, 2004, 88: 91-109.[6] Gutiérrez S, Velasco J, Fernandez FJ, Martin JF. The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetyl-cephalosporin C acetyl-transferase closely related to homoserine O-acetyltransferase. J Bacteriol, 1992, 174(9): 3056-3064.[7] Lejon S, Ellis J, Valegard K. The last step in cephalosporin C formation revealed: crystal structures of deacetylcepha-losporin C acetyltransferase from Acremonium chrysogenum in complexes with reaction intermediates. J Mol Biol, 2008, 377(3): 935-944.[8] Brakhage AA, Thön M, Spröte P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P. Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of transacting factors. Phytochemistry, 2009, 70(15-16): 1801-1811.[9] Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol, 2007, 73(10): 3412-3422.[10] Ullán RV, Teijeira F, Guerra SM, Vaca I, Martín JF. Characterization of a novel peroxisome membrane protein essential for conversion of isopenicillin N into cepha-losporin C. Biochem J, 2010, 432(2): 227-236.[11] Teijeira F, Ullán RV, Fernández-Lafuente R, Martín JF. CefR modulates transporters of β-lactam intermediates preventing the loss of penicillins to the broth and increases cephalosporin production in Acremonium chrysogenum. Metab Eng, 2011, doi:10.1016/j.ymben.2011.06.004.[12] Teijeira F, Ullán RV, Guerra SM, García-Estrada C, Vaca I, Martín JF. The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J, 2009, 418(1): 113-124.[13] Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol, 2010, 86(1): 51-62.[14] Meyer V. Genetic engineering of filamentous fungiprogress, obstacles and future trends. Biotechnol Adv, 2008, 26(2): 177-185.[15] Skatrud PL, Queener SW, Carr LG, Fisher DL. Efficient integrative transformation of Cephalosporium acremonium. Curr Genet, 1987, 12(5): 337-348.[16] Xu W, Zhu CB, Zhu BQ. An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium acremonium mediated by Agrobacterium tumefaciens. J Microbiol Biotechnol, 2005, 15(4): 683-688.[17] 袁宁, 胡又佳, 朱春宝 朱宝泉. 透明颤菌血红蛋白的 |