[1] 陈少游, 王峰. 一个水稻生殖发育突变体的遗传分析及基因定位[学位论文]. 福州: 福建农林大学, 2008.[2] 罗琼, 周开达, 刘国庆, 徐吉臣, 肖晗, 朱立煌. 水稻无内稃突变体的遗传分析和基因定位. 遗传学报, 2002, 29(31): 230-234.[3] Zhang QF, Xu JD, Li Y, Xu PZ, Zhang HY, Wu XJ. Morphological, anatomical and genetic analysis for a rice mutant with abnormal hull. J Genet Genomics, 2007, 34(6): 519-526.[4] 李云峰, 杨正林, 凌英华, 王楠, 任德勇, 王增, 何光华. 水稻多小花小穗突变体mf1的鉴定与 基因定位. 作物学报, 2011, 37(2): 280-285.[5] Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37.[6] Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ. A novel class of MADS box genes is involved in ovule develop-ment in petunia. Plant Cell, 1995, 7(10): 1569-1582.[7] Theissen G, Saedler H. Plant biology: floral quartets. Nature, 2001, 409(6819): 469 -471.[8] Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003, 15(4): 914- 925.[9] Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hi-rano HY. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006, 18(1): 15-28.[10] Li Y, Xu PZ, Zhang HY, Peng H, Zhang QF, Wang XD, Wu XJ. Characterization and identification of a novel mu-tant fon(t) on floral organ number and flo-ral organ identity in rice. J Genet Genomics, 2007, 34(8): 730-737.[11] 杨德卫, 叶新福. 水稻颖花突变体的最新研究进展. 分子植物育种, 2010, 8(1): 106-116.[12] 杨德卫, 曾美娟, 卢礼斌, 叶宁, 刘成德, 郑向华, 叶新福. 一个水稻矮秆突变体的遗传分析及基因定 位. 植物学报, 2011, 45(6): 617-624.[13] Quarrie S, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Biol, 1999, 50(337): 1299-1306.[14] Yuan Z, Gao S, Xue DW, Luo D, Li LT, Ding SY, Yao X, Wilson ZA, Qian Q, Zhang DB. RETARDED PALEA1 controls palea development and floral zy-gomorphy in rice. Plant Physiol, 2009, 149(1): 235-244.[15] Ambrose BA, Lrner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RG. Molecular and genetics analyses of Sil-kyl gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell, 2000, 5(3): 569-579.[16] 彭慧娟, 刘国华. 水稻无内稃突变体的花器形态观察与基因定位[学位论文]. 长沙: 湖南农业大学, 2007.[17] Bossinger G, Rohde W, Lundquist U, Salamini F. Genetics of barley development: mutant phenotypes and molecular aspects. In barley: Genetics, Biochemistry, Molecular Biotechnology. Edited by Shewry PR, 1992, 231-263. CAB International, Wallingford.[18] Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM. The ANTHER INDEHISCENCE1 gene en-coding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135(3): 1514-1525.[19] Park JJ, Jin P, Yoon J, Yang JI, Jeong H, Ranathunge K, Schreiber L, Franke R, Lee IJ, An G. Mutation in WILTED DWARF and LETHAl 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74(1-2): 91-103.[20] Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY. The gene FLORAL ORGAN NUMBER1 regu-lates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131(22): 5649- 5657.[21] Kalika P, Sriram P, Usha VH. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J, 2005, 43(6): 915-928.[22] Lee SY, Kim J, Han JJ, Han MJ, An G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSI |