[1] 杨壹羚, 褚嘉祐, 王明荣. 肿瘤遗传异质性. 遗传, 2013, 35(1): 1–9.
[2] Tang DG. Understanding cancer stem cell heterogeneity and plasticity. Cell Res, 2012, 22(3): 457–472.
[3] Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer, 2012, 12(2): 133–143.
[4] Visvader JE. Cells of origin in cancer. Nature, 2011, 469(7330): 314–322.
[5] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674.
[6] Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1): 12–27.
[7] 张丽丽, 吴建新. DNA甲基化——肿瘤产生的一种表观遗传学机制. 遗传, 2006, 28(7): 880–885.
[8] 苏玉, 王溪, 朱卫国. DNA甲基转移酶的表达调控及主要生物学功能. 遗传, 2009, 31(11): 1087–1093.
[9] 宋博研, 朱卫国. 组蛋白甲基化修饰效应分子的研究进展. 遗传, 2011, 33(4): 285–292.
[10] Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW. Epigenetic stem cell signature in cancer. Nat Genet, 2007, 39(2): 157–158.
[11] Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393(6683): 386–389.
[12] Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev, 1999, 13(15): 1924–1935.
[13] Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med, 2011, 17(3): 330–339.
[14] Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A, Levine RL, Nik S, Chen EI, Abeliovich A. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature, 2012, 488(7413): 652–655.
[15] Liang GY, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res, 2013, 23(1): 49–69.
[16] Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature, 2012, 488(7412): 527–530.
[17] Krivtsov AV, Twomey D, Feng ZH, Stubbs MC, Wang YZ, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA. Transformation from com¬mitted progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 2006, 442(7104): 818–822.
[18] Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 2012, 337(6095): 730–735.
[19] Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D, Sevillano M, Hernando-Mom¬blona X, da Silva-Diz V, Muñoz P, Clevers H, Sancho E, Mangues R, Batlle E. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell, 2011, 8(5): 511–524.
[20] Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res, 2010, 70(24): 10433–10444.
[21] Calvanese V, Horrillo A, Hmadcha A, Suarez-Alvarez B, Fernandez AF, Lara E, Casado S, Menendez P, Bueno C, Garcia-Castro J, Rubio R, Lapunzina P, Alaminos M, Borghese L, Terstegge S, Harrison NJ, Moore HD, Brüstle O, Lopez-Larrea C, Andrews PW, Soria B, Esteller M, Fraga MF. Cancer genes hypermethylated in human embryonic stem cells. PLoS ONE, 2008, 3(9): 0003294.
[22] Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cance |