遗传 ›› 2016, Vol. 38 ›› Issue (11): 979-991.doi: 10.16288/j.yczz.16-121
殷丽琴1, 2, 付绍红2, 杨进2, 李云2, 王继胜2, 王茂林1
收稿日期:
2016-04-06
出版日期:
2016-11-20
发布日期:
2016-09-09
通讯作者:
王茂林,博士,教授,研究方向:植物分子遗传学及油菜遗传育种。E-mail: mlwang@scu.edu.cn;杨进,硕士,高级农艺师,研究方向:油菜育种与栽培。E-mail: yjjing@163.com
作者简介:
殷丽琴,在读博士,助理研究员,研究方向:分子遗传学及基因工程。E-mail: yinlq1118@163.com
基金资助:
Liqin Yin1, 2, Shaohong Fu2, Jin Yang2, Yun Li2, Jisheng Wang2, Maolin Wang1
Received:
2016-04-06
Online:
2016-11-20
Published:
2016-09-09
Supported by:
摘要: 单倍体(Haploid)是指含有配子染色体数目的个体,对其进行基因组加倍可以快速获得纯合双单倍体(Doubled haploid, DH)。单倍体和双单倍体在植物品种选育、突变体筛选、基因功能鉴定、细胞学研究、遗传群体构建等方面具有重要作用,是近年来植物领域的一大研究热点。本文从单倍体和双单倍体的产生途径、鉴定、形成机理以及应用等方面较全面地综述了单倍体的最新研究进展,为单倍体的研究利用作一定的参考。
殷丽琴, 付绍红, 杨进, 李云, 王继胜, 王茂林. 植物单倍体的产生、鉴定、形成机理及应用[J]. 遗传, 2016, 38(11): 979-991.
Liqin Yin, Shaohong Fu, Jin Yang, Yun Li, Jisheng Wang, Maolin Wang. Generation, identification, formation mechanism and application of plant haploids[J]. Hereditas(Beijing), 2016, 38(11): 979-991.
[1] Blakeslee AF, Belling J, Farnham ME, Bergner AD. A haploid mutant in the Jimson weed, “ Datura stramonium ”. Science , 1922, 55(1433): 646-647. [2] Guha S, Maheshwari SC. In vitro production of embryos from anthers of Datura . Nature , 1964, 204(4957): 497. [3] Kasha KJ, Kao KN. High frequency haploid production in barley ( Hordeum vulgare L.). Nature , 1970, 225 (5235): 874-876. [4] Forster BP, Heberle-Bors E, Kasha KJ, Touraev A. The resurgence of haploids in higher plants. Trends Plant Sci , 2007, 12(8): 368-375. [5] Murovec J, Bohanec B. Haploids and doubled haploids in plant breeding. In: Abdurakhmonov IY. Plant Breeding. Croatia: INTECH Open Access Publisher, 2012: 87-106. [6] Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R. Haploids: constraints and opportunities in plant breeding. Biotechnol Adv , 2015, 33(6): 812-829. [7] Dunwell JM. Haploids in flowering plants: origins and exploitation. Plant Biotechnol J , 2010, 8(4): 377-424. [8] Kurtar ES, Balkaya A. Production of in vitro haploid plants from in situ induced haploid embryos in winter squash ( Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell Tiss Organ Cult , 2010, 102(3): 267-277. [9] Jauhar PP, Xu SS, Baenziger PS. Haploidy in cultivated wheats: induction and utility in basic and applied research. Crop Sci , 2009, 49(3): 737-755. [10] Polgári D, Cseh A, Szakács É, Jäger K, Molnár-Láng M, Sági L. High-frequency generation and characterization of intergeneric hybrids and haploids from new wheat-barley crosses. Plant Cell Rep , 2014, 33(8): 1323-1331. [11] Asker S. A monoploid of Potentilla argentea . Hereditas , 1983, 99(2): 303-304. [12] Germanà MA, Chiancone B. Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss Organ Cult , 2001, 66(1): 59-66. [13] Ishii T, Karimi-Ashtiyani R, Houben A. Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol , 2016, 67(1): 421-438. [14] Chase SS. Monoploids in maize. In: Gowen JW. Heterosis. Ames: Iowa State College Press, 1952: 399. [15] Coe Jr EH. A line of maize with high haploid frequency. Am Nat , 1959, 93(873): 381-382. [16] Geiger HH, Gordillo GA. Doubled haploids in hybrid maize breeding. Maydica , 2009, 54(4): 485-499. [17] Rotarenco V, Dicu G, State D, Fuia S. New inducers of maternal haploids in maize. Maize Genet Coop Newslett , 2010, 84: 1-7. [18] Prigge V, Xu XW, Li L, Babu R, Chen SJ, Atlin GN, Melchinger AE. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics , 2012, 190(2): 781-793. [19] Wedzony M, Röber FK, Geiger HH. Chromosome elimination observed in selfed progenies of maize inducer line RWS. In: XVIIth International Congress on Sex Plant Reproduction. Lublin, Poland: Maria Curie-Sklodowska University Press, 2002: 173. [20] Liang L, Xu XW, Jin WW, Chen SJ. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta , 2009, 230(2): 367-376. [21] Xu XW, Li L, Dong X, Jin WW, Melchinger AE, Chen SJ. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J Exp Bot , 2013, 64(4): 1083-1096. [22] Zhao X, Xu XW, Xie HX, Chen SJ, Jin WW. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol , 2013, 163(2): 721-731. [23] Ravi M, Chan SWL. Haploid plants produced by centromere-mediated genome elimination. Nature , 2010, 464(7288): 615-618. [24] Burrack LS, Berman J. Flexibility of centromere and kinetochore structures. Trends Genet , 2012, 28(5): 204- 212. [25] Ravi M, Marimuthu MPA, Tan EH, Maheshwari S, Henry IM, Marin-Rodriguez B, Urtecho G, Tan J, Thornhill K, Zhu F, Panoli A, Sundaresan V, Britt AB, Comai L, Chan SWL. A haploid genetics toolbox for Arabidopsis thaliana . Nat Commun , 2014, 5: 5334. [26] Tek AL, Stupar RM, Nagaki K. Modification of centromere structure: A promising approach for haploid line production in plant breeding. Turk J Agric For , 2015, 39(4): 557-562. [27] Raychaudhuri N, Dubruille R, Orsi GA, Bagheri HC, Loppin B, Lehner CF. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-a presence in Drosophila sperm. PLoS Biol , 2012, 10(12): e1001434. [28] Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K, Weiss O, Demidov D, Schmidt K, Kumlehn J, Houben A. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci USA , 2015, 112(36): 11211-11216. [29] Zabirova ER, Shatskaya OA, Shcherbak VS. Line 613/2 as a source of a high frequency of spontaneous diploidization in corn. Maize Genet Coop Newslett , 1993, 67: 67. [30] Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, Comai L, Chan SWL, Maloof JN. Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proc Natl Acad Sci USA , 2012, 109(11): 4227-4232. [31] Seguí-Simarro JM, Nuez F. Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res , 2008, 120(3-4): 358-369. [32] Jakše M, Hirschegger P, Bohanec B, Havey MJ. Evaluation of gynogenic responsiveness and pollen viability of selfed doubled haploid onion lines and chromosome doubling via somatic regeneration. J Am Soc Hortic Sci , 2010, 135(1): 67-73. [33] Testillano P, Georgiev S, Mogensen HL, Coronado MJ, Dumas C, Risueno MC, Matthys-Rochon E. Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma , 2004, 112(7): 342-349. [34] Anderson JA, Mousset-Déclas C, Williams EG, Taylor NL. An in vitro chromosome doubling method for clovers ( Trifolium spp.). Genome , 1991, 34(1): 1-5. [35] Häntzschel KR, Weber G. Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma , 2010, 241(1-4): 99-104. [36] Kato A, Geiger HH. Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breeding , 2002, 121(5): 370- 377. [37] Kleiber D, Prigge V, Melchinger AE, Burkard F, Vicente FS, Palomino G, Gordillo GA. Haploid fertility in temperate and tropical maize germplasm. Crop Sci , 2012, 52(2): 623-630. [38] Lv HH, Wang QB, Yang LM, Fang ZY, Liu YM, Zhuang M, Zhang YY, Yang YH, Xie BY, Wang XW. Breeding of cabbage ( Brassica oleracea L. var. capitata ) with fusarium wilt resistance based on microspore culture and marker-assisted selection. Euphytica , 2014, 200(3): 465-473. [39] 付绍红, 张汝全, 杨进, 李云, 王继胜, 邹琼, 陶兰蓉, 康泽明, 唐蓉. 甘蓝型油菜纯合四倍体诱导系的选育方法: 中国, CN103858753A. 2014-06-18. [40] Delaat AMM, Gohde W, Vogelzakg MJDC. Determination of ploidy of single plants and plant populations by flow cytometry. Plant Breeding , 1987, 99(4): 303-307. [41] Battistelli GM, Von Pinho RG, Justus A, Couto EGO, Balestre M. Production and identification of doubled haploids in tropical maize. Genet Mol Res , 2013, 12(4): 4230-4242. [42] Borrino EM, Powell W. Stomatal guard cell length as an indictor of ploidy in microspore-derived plants of barley. Genome , 1988, 30(2): 158-160. [43] Sood S, Dhawan R, Singh K, Bains NS. Development of novel chromosome doubling strategies for wheat × maize system of wheat haploid production. Plant Breeding , 2003, 122(6): 493-496. [44] Choe E, Carbonero CH, Mulvaney K, Rayburn AL, Mumm RH. Improving in vivo maize doubled haploid production efficiency through early detection of false positives. Plant Breeding , 2012, 131(3): 399-401. [45] Maletskaya EI, Yudanova SS, Maletskii SI. Haploids in apozygotic seed progenies of sugar beet ( Beta vulgaris L.). Sugar Tech , 2009, 11(1): 60-64. [46] Aalders LE. Monoploidy in cucumbers. J Hered , 1958, 49(1): 41-44. [47] Weber S, Ünker F, Friedt W. Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breeding , 2005, 124(5): 511-513. [48] Ochatt SJ. Flow cytometry in plant breeding. Cytom Part A , 2008, 73A(7): 581-598. [49] Melchinger AE, Schipprack W, Würschum T, Chen SJ, Technow F. Rapid and accurate identification of in vivo -induced haploid seeds based on oil content in maize. Sci Rep , 2013, 3: 2129. [50] Chaikam V, Nair SK, Babu R, Martinez L, Tejomurtula J, Boddupalli PM. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet , 2015, 128(1): 159-171 [51] Melchinger AE, Schipprack W, Utz HF, Mirdita V. In vivo haploid induction in maize: identification of haploid seeds by their oil content. Crop Sci , 2014, 54(4): 1497-1504. [52] Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Res , 1996, 6(10): 995-1001. [53] Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang LL, Nogué F, Chan SWL, Siddiqi I, Mercier R. Synthetic clonal reproduction through seeds. Science , 2011, 331(6019): 876. [54] Hofinger BJ, Huynh OA, Jankowicz-Cieslak J, Müller A, Otto I, Kumlehn J, Till BJ. Validation of doubled haploid plants by enzymatic mismatch cleavage. Plant Methods , 2013, 9(1): 43. [55] Maraschin SF, de Priester W, Spaink HP, Wang M. Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot , 2005, 56(417): 1711-1726. [56] Touraev A, Vicente O, Heberle-Bors E. Initiation of microspore embryogenesis by stress. Trends Plant Sci , 1997, 2(8): 297-302. [57] Bhojwani SS, Dunwell JM, Sunderland N. Nucleic-acid and protein contents of embryogenic tobacco pollen. J Exp Bot , 1973, 24(5): 863-869. [58] Corral-Martínez P, Parra-Vega V, Seguí-Simarro JM. Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic cleaning. J Exp Bot , 2013, 64(10): 3061-3075. [59] Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM, Hattori J, Liu CM, van Lammeren AA, Miki BLA, Custers JBM, van Lookeren Campagne MM. Ectopic Expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell , 2002, 14(8): 1737-1749. [60] Joosen R, Cordewener J, Supena EDJ, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K. Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol , 2007, 144(1): 155-172. [61] Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE. Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus . Plant Physiol , 2007, 144(1): 134-154. [62] Muñoz-Amatriaín M, Svensson JT, Castillo AM, Cistué L, Close TJ, Vallés MP. Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis. Physiol Plantarum , 2006, 127(4): 551-560. [63] Muñoz-Amatriaín M, Svensson JT, Castillo AM, Close TJ, Vallés MP. Microspore embryogenesis: assignment of genes to embryo formation and green vs. albino plant production. Funct Integr Genomic , 2009, 9(3): 311-323. [64] Seguí-Simarro JM, Nuez F. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plantarum , 2008, 134(1): 1-12. [65] Tsuwamoto R, Fukuoka H, Takahata Y. Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus . Planta , 2007, 225(3): 641-652. [66] Żur I, Dubas E, Krzewska M, Sánchez-Díaz RA, Castillo AM, Vallés MP. Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (× Triticosecale Wittm.). Plant Cell Tiss Organ Cult , 2014, 116(2): 261-267. [67] Zhang FL, Takahata Y. Inheritance of microspore embryogenic ability in Brassica crops. Theor Appl Genet , 2001, 103(2-3): 254-258. [68] Bennett MD, Finch RA, Barclay IR. The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma , 1976, 54(2): 175-200. [69] Laurie DA, Bennett MD. The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome , 1989, 32(6): 953-961. [70] Finch RA. Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma , 1983, 88(5): 386-393. [71] Schwarzacher-Robinson T, Finch R, Smith J, Bennett MD. Genotypic control of centromere positions of parental genomes in Hordeum × Secale hybrid metaphases. J Cell Sci , 1987, 87(2): 291-304. [72] Ishii T, Ueda T, Tanaka H, Tsujimoto H. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res , 2010, 18(7): 821-831. [73] Subrahmanyam NC, Kasha KJ. Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma , 1973, 42(2): 111-125. [74] Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brüß C, Kumlehn J, Matzk F, Houben A. Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell , 2005, 17(9): 2431-2438. [75] Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA , 2011, 108(33): E498-E505. [76] Davies DR. Chromosome elimination in inter-specific hybrids. Heredity , 1974, 32(2): 267-270. [77] Zelesco PA, Graves JA. Chromosome segregation from cell hybrids. IV. Movement and position of segregant set chromosomes in early-phase interspecific cell hybrids. J Cell Sci , 1988, 89(1): 49-56. [78] Vig BK, Athwal RS. Sequence of centromere separation: separation in a quasi-stable mouse-human somatic cell hybrid. Chromosoma , 1989, 98(3): 167-173. [79] Sakai C, Konno F, Nakano O, Iwai T, Yokota T, Lee J, Nishida-Umehara C, Kuroiwa A, Matsuda Y, Yamashita M. Chromosome elimination in the interspecific hybrid medaka between Oryzias latipes and O. hubbsi . Chromosome Res , 2007, 15(6): 697-709. [80] Wang Z, Yin H, Lv L, Feng YY, Chen SP, Liang JT, Huang Y, Jiang XH, Jiang HW, Bukhari I, Wu LJ, Cooke H, Shi QH. Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells. Cell Cycle , 2014, 13(8): 1345-1356. [81] Fukuda H. Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol Biol , 2000, 44(3): 245-253. [82] Kim NS, Armstrong KC, Fedak G, Ho K, Park NI. A microsatellite sequence from the rice blast fungus ( Magnaporthe grisea ) distinguishes between the centromeres of Hordeum vulgare and H . bulbosum in hybrid plants. Genome , 2002, 45(1): 165-174. [83] Houben A, Sanei M, Pickering R. Barley doubled-haploid production by uniparental chromosome elimination. Plant Cell Tiss Organ Cult , 2011, 104(3): 321-327. [84] Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang JM. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell , 2004, 16(3): 571-581. [85] Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell , 2002, 14(5): 1053-1066. [86] Ishii T, Sunamura N, Matsumoto A, Eltayeb AE, Tsujimoto H. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat ( Avena sativa L.) × pearl millet ( Pennisetum glaucum L.) hybrid embryos. Chromosome Res , 2015, 23(4): 709-718. [87] Perpelescu M, Fukagawa T. The ABCs of CENPs. Chromosoma , 2011, 120(5): 425-446. [88] Strigens A, Schipprack W, Reif JC, Melchinger AE. Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS One , 2013, 8(2): e57234. [89] Daker MG. 'Kleine Liebling', a haploid cultivar of Pelargonium . Nature , 1966, 211(5048): 549-550. [90] Săulescu NN, Ittu G, Giura A, Mustăţea P, Ittu M. Results of using Zea method for doubled haploid production in wheat breeding at NARDI Fundulea-Romania. Rom Agric Res , 2012, 29(29): 3-8. [91] Depauw RM, Knox RE, Humphreys DG, Thomas JB, Fox SL, Brown PD, Singh AK, Pozniak CJ, Randhawa HS, Fowler DB, Graf RJ, Hucl PJ. New breeding tools impact Canadian commercial farmer fields. Czech J Genet Plant Breed , 2011, 47(S1): S28-S34. [92] Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Enrico Pè M, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier1 F, Wincker P. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature , 2007, 449(7161): 463-467. [93] Medrano H, Primomillo E. Selection of Nicotiana tabacum haploids of high photosynthetic efficiency. Plant Physiol , 1985, 79(2): 505-508. [94] Valkonen JPT, Moritz T, Watanabe KN, Rokka VM. Dwarf (di)haploid pito mutants obtained from a tetraploid potato cultivar ( Solanum tuberosum subsp. Tuberosum ) via anther culture are defective in gibberellin biosynthesis. Plant Sci , 1999, 149(1): 51-57. [95] Kuzuya M, Hosoya K, Yashiro K, Tomita K, Ezura H. Powdery mildew ( Sphaerotheca fuliginea ) resistance in melon is selectable at the haploid level. J Exp Bot , 2003, 54(384): 1069-1074. [96] Park DS, Park SK, Lee BC, Song SY, Jun NS, Manigbas NL, Cho JH, Nam MH, Jeon JS, Han CD, Choi KJ, Kim DH, Woo Y, Koh HJ, Kang HW, Yi G. Molecular characterization and physico-chemical analysis of a new giant embryo mutant allele ( ge t ) in rice ( Oryza sativa L.). Genes Genom , 2009, 31(4): 277-282. [97] Chauhan H, Khurana P. Use of doubled haploid technology for development of stable drought tolerant bread wheat ( Triticum aestivum L.) transgenics. Plant Biotechnol J , 2011, 9(3): 408-417. [98] Touraev A, Stöger E, Voronin V, Heberle-Bors E. Plant male germ line transformation. Plant J , 1997, 12(4): 949-956. [99] Kapusi E, Hensel G, Coronado MJ, Broeders S, Marthe C, Otto I, Kumlehn J. The elimination of a selectable marker gene in the doubled haploid progeny of co- transformed barley plants. Plant Mol Biol , 2013, 81(1- 2): 149-160. [100] Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumlehn J. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One , 2014, 9(3): e92046. [101] Shen YO, Pan GT, Lübberstedt T. Haploid strategies for functional validation of plant genes. Trends Biotechnol , 2015, 33(10): 611-620. [102] Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chèvre AM, Jenczewski E. Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics , 2007, 175(2): 487-503. [103] Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chèvre AM, Jenczewski E. Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell , 2009, 21(2): 373-385. [104] Cifuentes M, Rivard M, Pereira L, Chelysheva L, Mercier R. Haploid meiosis in Arabidopsis : double-strand breaks are formed and repaired but without synapsis and crossovers. PLoS One , 2013, 8(8): e72431. [105] Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, Mckenzie IH. Marker assisted selection of fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breeding , 2003, 12(4): 309-317. [106] de Araújo LG, Prabhu AS, Pereira PAA, da Silva GB. Marker-assisted selection for the rice blast resistance gene Pi-ar in a backcross population. Crop Breed Appl Biot , 2010, 10(1): 23-31. [107] Prasanna BM, Chaikam V, Mahuku G, Prasanna BM, Chaikam V, Mahuku G. Doubled Haploid Technology in Maize Breeding: Theory and Practice. Mexico, DF (Mexico): CIMMYT, 2012. [108] Dirks R, Van Dun K, De Snoo CB, Van Den Berg M, Lelivelt CLC, Voermans W, Woudenberg L, De Wit JPC, Reinink K, Schut JW, Van Der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, Van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, De Jong H, Wijnker E. Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J , 2009, 7(9): 837-845. |
[1] | 陈佳,舒明月,里进,付爱思,杨帆,王邹,李一荣,邓子新,刘天罡. 三代测序与靶向捕获技术联用进行高分辨HLA基因分型及MHC区域单倍体型精细鉴定[J]. 遗传, 2019, 41(4): 337-348. |
[2] | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. |
[3] | 宋洁, 吴永波, 周跃恒, 柳波娟, 王楠, 郝转芳, 吴元奇. 作物组学数据库的比较和应用[J]. 遗传, 2018, 40(7): 534-545. |
[4] | 童晓玲,方春燕,盖停停,石津,鲁成,代方银. CRISPR/Cas9系统在昆虫中的应用[J]. 遗传, 2018, 40(4): 266-278. |
[5] | 康岚, 陈嘉瑜, 高绍荣. 中国细胞重编程和多能干细胞研究进展[J]. 遗传, 2018, 40(10): 825-840. |
[6] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[7] | 李红花,刘钢. CRISPR/Cas9在丝状真菌基因组编辑中的应用[J]. 遗传, 2017, 39(5): 355-367. |
[8] | 李平华, 马翔, 张叶秋, 张倩, 黄瑞华. 影响二花脸猪高产仔性能的生理及遗传机制研究进展[J]. 遗传, 2017, 39(11): 1016-1024. |
[9] | 付洋, 舒在悦, 顾鸣敏. 促通读药物的作用机制与临床应用[J]. 遗传, 2016, 38(7): 623-633. |
[10] | 周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用[J]. 遗传, 2016, 38(3): 227-242. |
[11] | 马兴亮,刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析[J]. 遗传, 2016, 38(2): 118-125. |
[12] | 胡运高, 郭连安, 杨国涛, 钦鹏, 范存留, 彭友林, 严维, 何航, 李仕贵. 直立密穗基因DEP2-1388的遗传分析及在杂交稻中的育种利用[J]. 遗传, 2016, 38(1): 72-81. |
[13] | 李荣, 郭源平, 潘敬新, 郭奕斌. 成骨不全Ⅰ型家系的基因检测和COL1A2基因新突变的致病性鉴定[J]. 遗传, 2015, 37(1): 41-47. |
[14] | 张哲, 罗元宇, 李晴晴, 贺金龙, 高宁, 张豪, 丁向东, 张勤, 李加琪. 一种基于高密度遗传标记的亲子鉴定方法及其应用[J]. 遗传, 2014, 36(8): 835-841. |
[15] | 郭敏霞 傅永福. 拟南芥SUMO底物的研究进展[J]. 遗传, 2013, 35(6): 727-734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: