[1] | Bai DP, Yang MM, Qu L, Chen YL . Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology, 2017,93:1-6. | [2] | Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS . Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene, 2003,22(38):5967-5975. | [3] | Doudna JA, Charpentier E. Genome editing . The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096. [DOI] | [4] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [5] | Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC . Making designer mutants in model organisms. Development, 2014,141(21):4042-4054. | [6] | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL . Corrigendum: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2016,34(2):210. [DOI] | [7] | He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B . Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res, 2016,44(9):e85. [DOI] | [8] | Auer TO, Duroure K, De Cian A, Concordet JP, Del BF . Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 2014,24(1):142-153. | [9] | Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T . MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc, 2016,11(1):118-133. | [10] | Meyer M, de Angelis MH, Wurst W, Kuhn R . Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA, 2010,107(34):15022-15026. | [11] | Heyer WD, Ehmsen K T, Liu J . Regulation of homologous recombination in eukaryotes. Annu Rev Genet, 2010,44:113-139. | [12] | Valerie K, Povirk LF . Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 2003,22(37):5792-5812. | [13] | Alshareeda AT, Negm OH, Albarakati N, Green AR, Nolan C, Sultana R, Madhusudan S, Benhasouna A, Tighe P, Ellis IO, Rakha EA . Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat, 2013,139(2):301-310. | [14] | Britton S, Coates J, Jackson SP . A new method for high- resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol, 2013,202(3):579-595. |
|
[1] |
郭雨萱, 严顺平, 王应祥. 重组酶RAD51和DMC1功能保守和分化研究进展[J]. 遗传, 2022, 44(5): 398-413. |
[2] |
马克学, 李睿, 郭芳莹, 宋鸽鸽, 吴萌, 陈广文, 刘德增. 细胞自噬基因Atg6在涡虫中枢神经系统再生中的功能研究[J]. 遗传, 2021, 43(8): 792-801. |
[3] |
耿喜宁, 芦特, 杜康, 杨珺, 康向阳. 不同基因型毛白杨同源重组变异研究[J]. 遗传, 2021, 43(2): 182-193. |
[4] |
李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[5] |
宋亚坤,张敏,王翘楚,彭玉荔,贾方兴,余春红. 利用RNA干扰技术沉默基因表达在本科实验教学中的设计与实践[J]. 遗传, 2019, 41(7): 653-661. |
[6] |
李帆, 余蓉培, 孙丹, 王继华, 李绅崇, 阮继伟, 单芹丽, 陆平利, 汪国鲜. 抑制植物减数分裂重组的分子机理[J]. 遗传, 2019, 41(1): 52-65. |
[7] |
梁彩娇, 孟繁梅, 艾云灿. 基于CRISPR/Cas系统的噬菌体基因组编辑[J]. 遗传, 2018, 40(5): 378-389. |
[8] |
刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法[J]. 遗传, 2018, 40(12): 1075-1091. |
[9] |
黄敏,杨业然,孙晓艳,张婷,郭彩霞. RAD51调控REV1参与DNA双链断裂修复[J]. 遗传, 2018, 40(11): 1007-1014. |
[10] |
贺燕,谢梦女,余立,任真,朱芳,符淳. 范可尼贫血基因在卵泡发育中的调节作用[J]. 遗传, 2017, 39(6): 469-481. |
[11] |
李国玲,钟翠丽,莫健新,全绒,吴珍芳,李紫聪,杨化强,张献伟. 动物基因组定点整合转基因技术研究进展[J]. 遗传, 2017, 39(2): 98-109. |
[12] |
王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[13] |
杨献伟,杨瑞馥,崔玉军. 细菌基因组同源重组:量化与鉴定[J]. 遗传, 2016, 38(2): 137-143. |
[14] |
殷利眷,胡斯奇,郭斐. CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用[J]. 遗传, 2015, 37(5): 412-418. |
[15] |
王小利,姜闯,刘建华,刘喜朋. 一种基于线性DNA片段同源重组的嗜盐古菌高效基因敲除系统[J]. 遗传, 2015, 37(4): 388-395. |
|