遗传 ›› 2021, Vol. 43 ›› Issue (12): 1107-1120.doi: 10.16288/j.yczz.21-256
马剑峰1,2(), 甘麦邻1,2, 朱砺1,2(), 沈林園1,2()
收稿日期:
2021-07-16
修回日期:
2021-09-17
出版日期:
2021-12-20
发布日期:
2021-11-23
通讯作者:
朱砺,沈林園
E-mail:1098991954@qq.com;zhuli7508@163.com;shenlinyuan0815@163.com
作者简介:
马剑峰,在读硕士研究生,专业方向:动物遗传育种。E-mail: 基金资助:
Jianfeng Ma1,2(), Mailin Gan1,2, Li Zhu1,2(), Linyuan Shen1,2()
Received:
2021-07-16
Revised:
2021-09-17
Online:
2021-12-20
Published:
2021-11-23
Contact:
Zhu Li,Shen Linyuan
E-mail:1098991954@qq.com;zhuli7508@163.com;shenlinyuan0815@163.com
Supported by:
摘要:
转运RNA衍生的小RNA (tRNA-derived small RNAs, tsRNA)是近年来发现的一类由成熟tRNA或tRNA前体通过特殊的作用机制加工产生的非编码RNA。根据其产生方式的不同,主要分为tRNA半分子(tRNA halves)和tRNA衍生片段(tRNA-derived RNA fragments, tRFs)两种类型。tsRNA广泛存在于各种生物体中,具有高度保守、结构稳定和组织表达特异性等特点。大量研究表明,多种细胞应激反应中tsRNA的表达显著上升,其参与应激反应的调控是一种保守的生物现象。tsRNA可通过调控转录本稳定性、调节翻译和作为表观遗传调控因子等方式在多种生物学过程中发挥重要作用,此外,tsRNA具有作为疾病生物标志物和治疗靶点的潜力,逐渐成为生物医学领域中的研究热点。本文从tsRNA的生物发生、功能和研究方法3个方面,对其研究现状进行了综述,以期为后续研究提供参考。
马剑峰, 甘麦邻, 朱砺, 沈林園. 转运RNA衍生的小RNA功能及其研究方法[J]. 遗传, 2021, 43(12): 1107-1120.
Jianfeng Ma, Mailin Gan, Li Zhu, Linyuan Shen. The function and research methods of tRNA-derived small RNAs (tsRNA)[J]. Hereditas(Beijing), 2021, 43(12): 1107-1120.
表1
应激诱导的相关tsRNA形成"
应激类型 | 样本类型 | 处理方式 | tsRNA名称/类型 | 参考文献 |
---|---|---|---|---|
氧化应激 | HeLa细胞 | H2O2处理 | tsRNA-His(GTG) | [ |
酵母(Saccharomyces) | H2O2处理 | tsRNA-His(GTG) | [ | |
小鼠(Mus musculus) | 亚砷酸盐 | 整体tsRNA水平上调 | [ | |
胚胎成纤维细胞 | ||||
U2OS细胞 | 亚砷酸盐 | 整体tsRNA水平上调 | [ | |
饥饿/营养缺乏 | HepG2细胞 | 无血清培养液 | Gly-tRNA halves、Val-tRNA halves等 | [ |
嗜热四膜虫(Tetrahymena thermophila) | 氨基酸饥饿 | 整体tsRNA水平上调 | [ | |
布氏锥虫(Trypanosoma brucei) | 磷酸缓冲溶液孵育 | 3ʹ-tRNAThr half | [ | |
缺氧 | 人乳腺癌细胞 | - | tRFGlu | [ |
人乳腺癌细胞 | 5% O2 | tDR-0009、tDR-7336 | [ | |
高pH | 嗜盐古生菌(Haloferax volcanii) | pH8.5~9.5 | Val-tRF | [ |
热应激或冷应激 | HepG2细胞 | 42℃或16℃ | Val-tRNA halves | [ |
紫外或热应激 | U2OS细胞 | 紫外照射或42℃ | 5ʹ -tiRNAMet | [ |
"
疾病类型 | tsRNA名称 | 表达情况 | 作用 | 参考文献 |
---|---|---|---|---|
乳腺癌 | ts-122 | 上调 | 促进正常乳腺上皮细胞增殖 | [ |
tRFGlu、tRFAsp、tRFGly、tRFTyr | 下调 | 与YBX1结合,降低原癌基因mRNA稳定性 | [ | |
tRF3E | 下调 | 竞争性结合核仁素NCL,抑制p53表达 | [ | |
5ʹ-tiRNAVal | 下调 | 抑制胃癌细胞FZD3/Wnt/β-Catenin通路 | [ | |
tRF-17 | 下调 | 抑制THBS1介导的TGF-β1/SMAD3信号通路 | [ | |
胃癌 | tRF-3019a | 上调 | 靶向FBXO47调节胃癌细胞增殖、迁移侵袭 | [ |
tRF-3017A | 上调 | 靶向肿瘤抑制基因NELL2,促进癌细胞迁移和侵袭 | [ | |
tRF-19-3L7L73JD | 下调 | 与肿瘤大小有关,抑制细胞增殖,诱导细胞凋亡 | [ | |
白血病 | 5ʹ-tRFHis | 下调 | 不同类型的tsRNA表达失调 | [ |
tRF-3019 | 上调 | 激活HTLV-1逆转录酶 | [ | |
前列腺癌 | 5ʹ-SHOT-RNA | 上调 | 促进前列腺癌细胞的增殖 | [ |
tRF-315 | 上调 | 靶向肿瘤抑制基因 GADD45A,抑制顺铂治疗诱导的前列腺癌细胞凋亡 | [ | |
肺癌 | tRF-Leu-CAG | 上调 | 促进细胞增殖和细胞周期进程 | [ |
ts-46、ts-47 | 下调 | 抑制细胞集落的形成 | [ | |
结直肠癌 | tRF-20-M0NK5Y93 | 下调 | 靶向Claudin-1,抑制细胞迁移和侵袭 | [ |
tRF/miR-1280 | 下调 | 通过Notch信号途径来抑制结肠直肠癌生长和转移 | [ | |
5ʹ-tRF-GlyGCC | 上调 | 结直肠癌组织中5ʹ-tRF-GlyGCC表达增加依赖于ALKBH3的上调 | [ | |
卵巢癌 | tRF-03357 | 上调 | 靶向HMBOX1,促进卵巢癌细胞增殖,迁移和侵袭 | [ |
tRF5-Glu | 下调 | 抑制卵巢癌细胞的增殖 | [ | |
膀胱癌 | 5ʹ-tRF-LysCTT | 上调 | 其水平升高和早期疾病进展、治疗结果差显著相关 | [ |
动脉粥样硬化 | tRF-Gly-GCC | 上调 | 调节内皮细胞和平滑肌细胞的细胞粘附、增殖、迁移 | [ |
过敏性皮肤炎 | tRF-28 | 下调 | - | [ |
非酒精性 脂肪肝 | tRF-Val-CAC-005 tiRNA-His-GTG-001 tRF-Ala-CGC-006 | 上调 | 血浆中tsRNA 水平升高与肝纤维化程度呈正相关 | [ |
呼吸合胞 病毒感染 | tRF5-GlnCTG | 上调 | tRF5-GlnCTG受核糖核酸酶 ELAC2 的调节,促进呼吸道合胞病毒复制 | [ |
阿尔茨海默病 | tRF5-GlyGCC tRF5-GluCTC tRF5-GlyCCC-2 | 上调 | NSun2下调使 tRNA 甲基化程度降低,ANG介导的tRF产生增加 | [ |
帕金森病 | - | - | 帕金森患者前额叶皮层、脑脊液和血清中鉴定出的tRFs可能成为生物标志物 | [ |
烟雾病 | - | - | 中性粒细胞表达差异的tsRNA参与免疫反应、血管生成和代谢调节等过程 | [ |
肌萎缩性脊髓 侧索硬化症 | 5ʹValCAC | 上调 | 血管生成素介导的应激反应增强,导致5ʹValCAC水平的增加 | [ |
表3
tsRNA数据库"
工具名称 | 特点 | 网址 | 时间 |
---|---|---|---|
tRFdb | 第一个tsRNA数据库,包括拟南芥、链球菌、黑腹果蝇、秀丽隐杆线虫、非洲爪蟾、斑马鱼、小鼠和人类8个物种 | http://genome.bioch.virginia.edu/trfdb | 2015 |
tDRmapper | 提供tsRNA标准化命名方法和定量方案 | https://github.com/sararselitsky/tDRmapper3 | 2015 |
tRF2Cancer | 从sRNA深度测序数据中准确识别tRF,并评估它们在多种癌症中的表达,对tRF起源位点及其类型进行注释 | http://rna.sysu.edu.cn/tRFfinder/ | 2016 |
SpermBase | 专门用于多物种精子RNA的分析数据库,包括tsRNA | http://www.spermbase.org | 2016 |
YM500v3 | 与癌症相关的小RNA测序数据集,包括tsRNA | http://ngs.ym.edu.tw/ym500/ | 2017 |
MINTmap | 用于线粒体和核tsRNA定位,能对深度测序数据中的tsRNA进行识别和量化 | https://github.com/TJU-CMC-Org/MINTmap/ | 2017 |
MINTbase v2.0 | 各种人体组织的核和线粒体tsRNA信息,以及前体tRNA的修饰信息 | http://cm.jefferson.edu/MINTbase/ | 2018 |
PtRFdb | 植物tsRNA数据库 | http://www.nipgr.res.in/PtRFdb/ | 2018 |
tRex | 第一个用于模式植物拟南芥tsRNA综合数据库 | http://combio.pl/trex | 2018 |
SPORTS1.0 | 可以基于RNA内的核苷酸错配预测潜在的RNA修饰位点 | https://github.com/junchaoshi/sports1.0 | 2018 |
tRFexplorer | 能够对TCGA数据库中tRNA片段进行差异表达分析 | https://trfexplorer.cloud/ | 2019 |
DASHR 2.0 | 第一个整合人类小非编码RNA和RNA-seq成熟产物的数据库 | https://lisanwanglab.org/DASHRv2 | 2019 |
BBCancer | 包含15种癌症类型的5040种正常和肿瘤血液样本中的6种RNA的表达数据 | http://bbcancer.renlab.org/ | 2020 |
OncotRF | 癌症中tsRNA的鉴定和定量,异常表达的tsRNA和基因,以及相关性分析、生存分析和功能富集分析等 | http://bioinformatics.zju.edu.cn/OncotRF | 2020 |
tRFtarget | 预测靶基因的结合位点、结合区域以及结合稳定性的自由能,以及相关实验证据 | http://trftarget.net | 2021 |
deepBase v3.0 | 整合多个癌症组织的数据,提供了最全面的非编码RNA表达图谱,构建了tsRNA、microRNA、snoRNA和lncRNA的生存图 | http://rna.sysu.edu.cn/deepbase3/index.html | 2021 |
tRFTar | 基于CLIP-seq数据,提供tsRNA的靶标预测 | http://www.rnanut.net/tRFTar/ | 2021 |
tRFTars | 预测人类tsRNA靶标 | http://trftars.cmuzhenninglab.org:3838/tar/ | 2021 |
tsRBase | 该数据库收集了20个物种不同组织或细胞系的样本,包括tsRNA的表达模式和功能信息等详细内容 | http://www.tsrbase.org | 2021 |
表4
tsRNA与蛋白质/RNA相互作用的研究方法"
全称 | 缩写 | 研究目的 | 相关文献 |
---|---|---|---|
RNA下拉实验(RNA pulldown) | - | 研究与目的RNA结合的蛋白质 | Falconi等[ |
RNA免疫沉淀 (RNA immunoprecipitation) | RIP | 研究与目的蛋白互作的RNA | 利用RIP鉴定出与Argonaute2蛋白结合的tsRNA,如tRF-3003a[ |
紫外交联与免疫共沉淀 (crosslinking immunoprecipitation) | CLIP | 研究与目的蛋白互作的RNA | 在人类乳腺癌细胞中进行了内源性YBX1的交联免疫共沉淀,随后进行了高通量测序(CLIP-seq),发现大量标记定位于tsRNA[ |
光活性核苷增强的交联和免疫共沉淀(photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation) | PAR-CLIP | 研究与目的蛋白互作的RNA | PAR-CLIP是以CLIP为基础改良的技术,Cho等[ |
杂交的交联连接测序(cross-linking ligation and sequencing of hybrids) | CLASH | 研究RNA与RNA的相互作用 | AGO CLASH数据表明,tsRNA能与靶RNA互补序列相互作用,将其招募到AGO单重复合物中并调节其表达或功能[ |
[1] | ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaöz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, NISC Comparative Sequencing Program, Baylor College of Medicine Human Genome Sequencing Center, Washington University Genome Sequencing Center, Broad Institute, Children's Hospital Oakland Research Institute, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007,447(7146):799-816. |
[2] | Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer, 2021,21(1):22-36. |
[3] | Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA, 2010,16(4):673-695. |
[4] | Andersen KL, Collins K. Several RNase T2 enzymes function in induced tRNA and rRNA turnover in the ciliate Tetrahymena. Mol Biol Cell, 2012,23(1):36-44. |
[5] | Rosace D, López J, Blanco S. Emerging roles of novel small non-coding regulatory RNAs in immunity and cancer. RNA Biol, 2020,17(8):1196-1213. |
[6] | Borek E, Baliga BS, Gehrke CW, Kuo CW, Belman S, Troll W, Waalkes TP. High turnover rate of transfer RNA in tumor tissue. Cancer Res, 1977,37(9):3362-3366. |
[7] | Speerm J, Gehrkep CW, Kuo KC, Waalkes TP, Borek E. tRNA breakdown products as markers for cancer. Cancer, 1979,44(6):2120-2123. |
[8] | Saxena SK, Rybak SM, Davey RT Jr, Youle RJ, Ackerman EJ. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem, 1992,267(30):21982-21986. |
[9] | Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA, 2008,14(10):2095-2103. |
[10] | Fu HJ, Feng JJ, Liu Q, Sun F, Tie Y, Zhu J, Xing RY, Sun XZ, Zheng XF. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett, 2009,583(2):437-442. |
[11] | Liapi E, van Bilsen M, Verjans R, Schroen B. tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. Biochim Biophys Acta Mol Cell Res, 2020,1867(3):118465. |
[12] | Raina M, Ibba M. tRNAs as regulators of biological processes. Front Genet, 2014,5:171. |
[13] | Maraia RJ, Lamichhane TN. 3′ processing of eukaryotic precursor tRNAs. WIREs RNA, 2011,2(3):362-375. |
[14] | Zong TY, Yang YY, Zhao H, Li L, Liu MX, Fu XX, Tang GZ, Zhou H, Aung LHH, Li PF, Wang JX, Wang ZB, Yu T. tsRNAs: novel small molecules from cell function and regulatory mechanism to therapeutic targets. Cell Prolif, 2021,54(3):e12977. |
[15] | Thompson DM, Parker R. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol, 2009,185(1):43-50. |
[16] | Saikia M, Krokowski D, Guan BJ, Ivanov P, Parisien M, Hu GF, Anderson P, Pan T, Hatzoglou M. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem, 2012,287(51):42708-42725. |
[17] | Su ZL, Kuscu C, Malik A, Shibata E, Dutta A. Angiogenin generates specific stress-induced tRNA halves and is not involved in tRF-3-mediated gene silencing. J Biol Chem, 2019,294(45):16930-16941. |
[18] | Lee SR, Collins K. Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem, 2005,280(52):42744-42749. |
[19] | Fricker R, Brogli R, Luidalepp H, Wyss L, Fasnacht M, Joss O, Zywicki M, Helm M, Schneider A, Cristodero M, Polacek N. A tRNA half modulates translation as stress response in Trypanosoma brucei. Nat Commun, 2019,10(1):118. |
[20] | Goodarzi H, Liu XH, Nguyen HCB, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell, 2015,161(4):790-802. |
[21] | Cui YY, Huang Y, Wu XW, Zheng MJ, Xia YQ, Fu ZY, Ge H, Wang S, Xie H. Hypoxia-induced tRNA-derived fragments, novel regulatory factor for doxorubicin resistance in triple-negative breast cancer. J Cell Physiol, 2019,234(6):8740-8751. |
[22] | Gebetsberger J, Zywicki M, Künzi A, Polacek N. tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea, 2012,2012:260909. |
[23] | Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol, 2009,185(1):35-42. |
[24] | Oberbauer V, Schaefer MR. tRNA-derived small RNAs: biogenesis, modification, function and potential impact on human disease development. Genes, 2018,9(12):607. |
[25] | Guzzi N, Bellodi C. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development. RNA Biol, 2020,17(8):1214-1222. |
[26] | Ma ZL, Zhou JB, Shao Y, Jafari FA, Qi PF, Li YL. Biochemical properties and progress in cancers of tRNA-derived fragments. J Cell Biochem, 2020,121(3):2058-2063. |
[27] | Tao EW, Cheng WY, Li WL, Yu J, Gao QY. tiRNAs: A novel class of small noncoding RNAs that helps cells respond to stressors and plays roles in cancer progression. J Cell Physiol, 2020,235(2):683-690. |
[28] | Prehn JHM, Jirström E. Angiogenin and tRNA fragments in Parkinson’s disease and neurodegeneration. Acta Pharmacol Sin, 2020,41(4):442-446. |
[29] | Thompson DM, Parker R. Stressing out over tRNA cleavage. Cell, 2009,138(2):215-219. |
[30] | Li NS, Shan NY, Lu LG, Wang ZH. tRFtarget: a database for transfer RNA-derived fragment targets. Nucleic Acids Res, 2021,49(D1):D254-D260. |
[31] | Park J, Ahn SH, Shin MG, Kim HK, Chang S. tRNA-derived small RNAs: novel epigenetic regulators. Cancers, 2020,12(10):2773. |
[32] | Martinez G. tRNA-derived small RNAs: new players in genome protection against retrotransposons. RNA Biol, 2018,15(2):170-175. |
[33] | Xie YY, Yao LP, Yu XC, Ruan Y, Li Z, Guo JM. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Tar, 2020,5(1):109. |
[34] | Zhu LW, Ge JX, Li TW, Shen YJ, Guo JM. tRNA-derived fragments and tRNA halves: the new players in cancers. Cancer Lett, 2019,452:31-37. |
[35] | Kumar P, Kuscu C, Dutta A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci, 2016,41(8):679-689. |
[36] | Farina NH, Scalia S, Adams CE, Hong DL, Fritz AJ, Messier TL, Balatti V, Veneziano D, Lian JB, Croce CM, Stein GS, Stein JL. Identification of tRNA-derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. J Cell Physiol, 2020,235(6):5318-5327. |
[37] | Falconi M, Giangrossi M, Zabaleta ME, Wang JB, Gambini V, Tilio M, Bencardino D, Occhipinti S, Belletti B, Laudadio E, Galeazzi R, Marchini C, Amici A. A novel 3′-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin . FASEB J, 2019,33(12):13228-13240. |
[38] | Mo DP, Jiang P, Yang YN, Mao XL, Tan XY, Tang X, Wei D, Li B, Wang XM, Tang L, Yan F. A tRNA fragment, 5′-tiRNA Val, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer . Cancer Lett, 2019,457:60-73. |
[39] | Zhang F, Shi JX, Wu ZH, Gao P, Zhang WX, Qu BC, Wang X, Song YX, Wang ZN. A 3′-tRNA-derived fragment enhances cell proliferation, migration and invasion in gastric cancer by targeting FBXO47. Arch Biochem Biophys, 2020,690:108467. |
[40] | Tong LH, Zhang WX, Qu BC, Zhang F, Wu ZH, Shi JX, Chen XW, Song YX, Wang ZN. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer. Front Oncol, 2021,10:570916. |
[41] | Shen YJ, Xie YY, Yu XC, Zhang SS, Wen QY, Ye GL, Guo JM. Clinical diagnostic values of transfer RNA-derived fragment tRF-19-3L7L73JD and its effects on the growth of gastric cancer cells. J Cancer, 2021,12(11):3230-3238. |
[42] | Veneziano D, Tomasello L, Balatti V, Palamarchuk A, Rassenti LZ, Kipps TJ, Pekarsky Y, Croce CM. Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proc Natl Acad Sci USA, 2019,116(48):24252-24258. |
[43] | Ruggero K, Guffanti A, Corradin A, Sharma VK, De Bellis G, Corti G, Grassi A, Zanovello P, Bronte V, Ciminale V, D’Agostino DM. Small noncoding RNAs in cells transformed by human t-cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase. J Virol, 2014,88(7):3612-3622. |
[44] | Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, Rigoutsos I, Kirino Y. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA, 2015,112(29):E3816-E3825. |
[45] | Yang CW, Lee M, Song G, Lim W. tRNA Lys-derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells . Pharmaceutics, 2021,13(1):55. |
[46] | Shao Y, Sun QL, Liu XM, Wang P, Wu RQ, Ma ZL. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem Biol Drug Des, 2017,90(5):730-738. |
[47] | Balatti V, Nigita G, Veneziano D, Drusco A, Stein GS, Messier TL, Farina NH, Lian JB, Tomasello L, Liu CG, Palamarchuk A, Hart JR, Bell C, Carosi M, Pescarmona E, Perracchio L, Diodoro M, Russo A, Antenucci A, Visca P, Ciardi A, Harris CC, Vogt PK, Pekarsky Y, Croce CM. tsRNA signatures in cancer. Proc Natl Acad Sci USA, 2017,114(30):8071-8076. |
[48] | Luan N, Chen YQ, Li QS, Mu YL, Zhou Q, Ye X, Deng Q, Ling LM, Wang J, Wang JW. TRF-20-M0NK5Y93 suppresses the metastasis of colon cancer cells by impairing the epithelial-to-mesenchymal transition through targeting Claudin-1. Am J Transl Res, 2021,13(1):124-142. |
[49] | Huang BQ, Yang HP, Cheng XX, Wang D, Fu SY, Shen WC, Zhang Q, Zhang LJ, Xue ZY, Li Y, Da YR, Yang Q, Li ZS, Liu L, Qiao L, Kong Y, Yao Z, Zhao P, Li M, Zhang RX. tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res, 2017,77(12):3194-3206. |
[50] | Wu YM, Yang XL, Jiang GM, Zhang HS, Ge LC, Chen F, Li JX, Liu HL, Wang HS. 5′-tRF-GlyGCC: a tRNA- derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med, 2021,13(1):20. |
[51] | Zhang MM, Li FF, Wang J, He WZ, Li Y, Li HY, Wei ZL, Cao YX. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. Oncotargets Ther, 2019,12:6371-6383. |
[52] | Zhou K, Diebel KW, Holy J, Skildum A, Odean E, Hicks DA, Schotl B, Abrahante JE, Spillman MA, Bemis LT. A tRNA fragment, tRF5-Glu, regulates BCAR3 expression and proliferation in ovarian cancer cells. Oncotarget, 2017,8(56):95377-95391. |
[53] | Papadimitriou M-A, Avgeris M, Levis P, Papasotiriou ECh, Kotronopoulos G, Stravodimos K, Scorilas A. tRNA-derived fragments (tRFs) in bladder cancer: increased 5′-tRF-LysCTT results in disease early progression and patients’ poor treatment outcome. Cancers, 2020,12(12):3661. |
[54] | He XQ, Yang YY, Wang Q, Wang JR, Li SF, Li CR, Zong TY, Li XL, Zhang Y, Zou YL, Yu T. Expression profiles and potential roles of transfer RNA-derived small RNAs in atherosclerosis. J Cell Mol Med, 2021,25(14):7052-7065. |
[55] | Meng L, Jiang L, Chen J, Ren HJ, Gao ZQ, Wu F, Wen YY, Yang LJ. Transfer RNA-derived fragment tRF-28-QSZ34KRQ590K in plasma exosomes may be a potential biomarker for atopic dermatitis in pediatric patients. Exp Ther Med, 2021,21(5):489. |
[56] | Huang P, Tu B, Liao HJ, Huang FZ, Li ZZ, Zhu KY, Dai F, Liu HZ, Zhang TY, Sun CZ. Elevation of plasma tRNA fragments as a promising biomarker for liver fibrosis in nonalcoholic fatty liver disease. Sci Rep, 2021,11(1):5886. |
[57] | Choi E-J, Wu WZ, Zhang K, Lee I, Kim I-H, Lee YS, Bao XY. ELAC2, an enzyme for tRNA maturation, plays a role in the cleavage of a mature tRNA to produce a tRNA-derived RNA fragment during respiratory syncytial virus infection. Front Mol Biosci, 2021,7:609732. |
[58] | Wu WZ, Lee I, Spratt H, Fang X, Bao XY. tRNA- derived fragments in alzheimer’s disease: implications for new disease biomarkers and neuropathological mechanisms. J Alzheimers Dis, 2021,79(2):793-806. |
[59] | Magee R, Londin E, Rigoutsos I. TRNA-derived fragments as sex-dependent circulating candidate biomarkers for Parkinson’s disease. Parkinsonism Relat D, 2019,65:203-209. |
[60] | Li LZ, Liu P, Wang RL, Huang YY, Luo JC, Jiao LQ, Tao Z, Zheng YM, Fan JF, Zhao HP, Han ZP, Luo YM. Pathophysiological significance of neutrophilic transfer RNA-derived small RNAs in asymptomatic moyamoya disease. Cells, 2021,10(5):1086. |
[61] | Hogg MC, Rayner M, Susdalzew S, Monsefi N, Crivello M, Woods I, Resler A, Blackbourn L, Fabbrizio P, Trolese MC, Nardo G, Bendotti C, van den Berg LH, van Es MA, Prehn JHM. 5′ValCAC tRNA fragment generated as part of a protective angiogenin response provides prognostic value in amyotrophic lateral sclerosis. Brain Commun, 2020, 2(2): fcaa138. |
[62] | Venkatesh T, Suresh PS, Tsutsumi R. tRFs: miRNAs in disguise. Gene, 2016,579(2):133-138. |
[63] | Li ZH, Ender C, Meister G, Moore PS, Chang Y, John B. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res, 2012,40(14):6787-6799. |
[64] | Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol, 2014,12:78. |
[65] | Sobala A, Hutvagner G. Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells. RNA Biol, 2013,10(4):553-563. |
[66] | Lafontaine DLJ. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol, 2015,22(1):11-19. |
[67] | Couvillion MT, Bounova G, Purdom E, Speed TP, Collins K. A Tetrahymena piwi bound to mature tRNA 3′ fragments activates the exonuclease Xrn2 for RNA processing in the nucleus. Mol Cell, 2012,48(4):509-520. |
[68] | Kim HK, Fuchs G, Wang SC, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu JP, Chu K, Zhang FJ, Chua M-S, So S, Zhang QC, Sarnow P, Kay MA. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 2017,552(7683):57-62. |
[69] | Kim HK, Xu JP, Chu K, Park H, Jang H, Li P, Valdmanis PN, Zhang QC, Kay MA. A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice. Cell Rep, 2019, 29(12): 3816-3824.e4. |
[70] | Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol, 2017,14(10):1364-1373. |
[71] | Lyons SM, Kharel P, Akiyama Y, Ojha S, Dave D, Tsvetkov V, Merrick W, Ivanov P, Anderson P. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res, 2020,48(11):6223-6233. |
[72] | Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell, 2011,43(4):613-623. |
[73] | Lyons SM, Gudanis D, Coyne SM, Gdaniec Z, Ivanov P. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat Commun, 2017,8(1):1127. |
[74] | Lyons SM, Achorn C, Kedersha NL, Anderson PJ, Ivanov P. YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res, 2016,44(14):6949-6960. |
[75] | Yu MQ, Lu BJ, Zhang JS, Ding JW, Liu PY, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol, 2020,13(1):121. |
[76] | Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab, 2019,29(5):1028-1044. |
[77] | Iwasaki YW, Siomi MC, Siomi H. PIWI-interacting RNA: its biogenesis and functions. Annu Rev Biochem, 2015,84(1):405-433. |
[78] | Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet, 2019,20(2):89-108. |
[79] | Couvillion MT, Sachidanandam R, Collins K. A growth- essential Tetrahymena Piwi protein carries tRNA fragment cargo. Gene Dev, 2010,24(24):2742-2747. |
[80] | Zhang X, He X, Liu C, Liu J, Hu QF, Pan T, Duan XB, Liu BF, Zhang YW, Chen JL, Ma XR, Zhang X, Luo HH, Zhang H. IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA To upregulate CD1a molecules on monocytes/dendritic cells. J Immunol, 2016,196(4):1591-1603. |
[81] | Saze H. Epigenetic regulation of intragenic transposable elements: a two-edged sword. J Biochem, 2018,164(5):323-328. |
[82] | Kim HK, Yeom JH, Kay MA. Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther, 2020,28(11):2340-2357. |
[83] | Schorn AJ, Gutbrod MJ, LeBlanc C, Martienssen R. LTR-Retrotransposon control by tRNA-Derived small RNAs. Cell, 2017,170(1):61-71. |
[84] | Min B, Park JS, Jeong YS, Jeon K, Kang YK. Dnmt1 binds and represses genomic retroelements via DNA methylation in mouse early embryos. Nucleic Acids Res, 2020,48(15):8431-8444. |
[85] | Fukuda K, Shinkai Y. SETDB1-mediated silencing of retroelements. Viruses, 2020,12(6):596. |
[86] | Kumar P, Mudunuri SB, Anaya J, Dutta A. tRFdb: a database for transfer RNA fragments. Nucleic Acids Res, 2015,43(D1):D141-D145. |
[87] | Zheng LL, Xu WL, Liu S, Sun WJ, Li JH, Wu J, Yang JH, Qu LH. tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res, 2016,44(W1):W185-W193. |
[88] | Schuster A, Tang C, Xie YM, Ortogero N, Yuan SQ, Yan W. SpermBase: a database for sperm-borne RNA contents. Biol Reprod, 2016,95(5):99. |
[89] | Gupta N, Singh A, Zahra S, Kumar S. PtRFdb: a database for plant transfer RNA-derived fragments. Database(Oxford), 2018, 2018: bay063. |
[90] | Zuo YL, Zhu L, Guo ZX, Liu WR, Zhang JT, Zeng Z, Wu QB, Cheng J, Fu X, Jin Y, Zhao Y, Peng Y. tsRBase: a comprehensive database for expression and function of tsRNAs in multiple species. Nucleic Acids Res, 2021,49(D1):D1038-D1045. |
[91] | Wang XM, Yang YN, Tan XY, Mao XL, Wei D, Yao YF, Jiang P, Mo DP, Wang T, Yan F. Identification of tRNA-derived fragments expression profile in breast cancer tissues. Curr Genomics, 2019,20(3):199-213. |
[92] | Xu C, Fu YF. Expression profiles of tRNA-derived fragments and their potential roles in multiple myeloma. Onco Targets Ther, 2021,14:2805-2814. |
[93] | Benesova S, Kubista M, Valihrach L. Small RNA- sequencing: approaches and considerations for miRNA analysis. Diagnostics, 2021,11(6):964. |
[94] | Drino A, Oberbauer V, Troger C, Janisiw E, Anrather D, Hartl M, Kaiser S, Kellner S, Schaefer MR. Production and purification of endogenously modified tRNA- derived small RNAs. RNA Biol, 2020,17(8):1104-1115. |
[95] | Shi JC, Zhang YF, Tan DM, Zhang XD, Yan MH, Zhang Y, Franklin R, Shahbazi M, Mackinlay K, Liu SC, Kuhle B, James ER, Zhang LW, Qu YC, Zhai QW, Zhao WX, Zhao LL, Zhou CC, Gu WF, Murn J, Guo JT, Carrell DT, Wang YS, Chen XM, Cairns BR, Yang XL, Schimmel P, Zernicka-Goetz M, Cheloufi S, Zhang Y, Zhou T, Chen Q. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat Cell Biol, 2021,23(4):424-436. |
[96] | Wang JY, Ma G, Li MH, Han X, Xu J, Liang MD, Mao XR, Chen X, Xia TS, Liu XA, Wang S. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol Ther Nucleic Acids, 2020,21:954-964. |
[97] | Shi HM, Yu MY, Wu Y, Cao YP, Li SW, Qu GT, Gong J, Gan WH, Zhang AQ. tRNA-derived fragments (tRFs) contribute to podocyte differentiation. Biochem Biophys Res Commun, 2020,521(1):1-8. |
[98] | Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev, 2009,23(22):2639-2649. |
[99] | Su ZL, Frost EL, Lammert CR, Przanowska RK, Lukens JR, Dutta A. tRNA-derived fragments and microRNAs in the maternal-fetal interface of a mouse maternal- immune-activation autism model. RNA Biol, 2020,17(8):1183-1195. |
[100] | McArdle H, Hogg MC, Bauer S, Rosenow F, Prehn JHM, Adamson K, Henshall DC, Spain E. Quantification of tRNA fragments by electrochemical direct detection in small volume biofluid samples. Sci Rep, 2020,10(1):7516. |
[101] | Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol, 2018,141(4):1202-1207. |
[102] | Shen LY, Tan ZD, Gan ML, Li Q, Chen L, Niu L, Jiang DM, Zhao Y, Wang JY, Li XW, Zhang SH, Zhu L. tRNA-derived small non-coding RNAs as novel epigenetic molecules regulating adipogenesis. Biomolecules, 2019,9(7):274. |
[103] | Veedu RN, Wengel J. Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers, 2010,7(3):536-542. |
[104] | Torres AG, Reina O, Stephan-Otto Attolini C, Ribas de Pouplana L,. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proc Natl Acad Sci USA, 2019,116(17):8451-8456. |
[105] | Green JA, Ansari MY, Ball HC, Haqqi TM. tRNA- derived fragments (tRFs) regulate post-transcriptional gene expression via AGO-dependent mechanism in IL-1β stimulated chondrocytes. Osteoarthritis Cartilage, 2020,28(8):1102-1110. |
[106] | Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA, 2018,24(8):1093-1105. |
[107] | Falconi M, Giangrossi M, Zabaleta ME, Wang JB, Gambini V, Tilio M, Bencardino D, Occhipinti S, Belletti B, Laudadio E, Galeazzi R, Marchini C, Amici A. A novel 3′-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin . FASEB J, 2019,33(12):13228-13240. |
[108] | Akiyama Y, Kharel P, Abe T, Anderson P, Ivanov P. Isolation and initial structure-functional characterization of endogenous tRNA-derived stress-induced RNAs. RNA Biol, 2020,17(8):1116-1124. |
[109] | Cho H, Lee W, Kim G-W, Lee S-H, Moon J-S, Kim M, Kim HS, Oh J-W. Regulation of La/SSB-dependent viral gene expression by pre-tRNA 3′ trailer-derived tRNA fragments. Nucleic Acids Res, 2019,47(18):9888-9901. |
[1] | 吕雪, 李帮洁, 徐寒梅. 功能性微肽通量发现和功能验证的研究进展[J]. 遗传, 2022, 44(6): 478-490. |
[2] | 熊婉迪, 徐开宇, 陆林, 李家立. 长链非编码RNA在阿尔茨海默病中的研究进展[J]. 遗传, 2022, 44(3): 189-197. |
[3] | 程敏, 张静, 曹鹏博, 周钢桥. 缺氧相关长链非编码RNA作为肝癌预后预测标志物的潜在价值[J]. 遗传, 2022, 44(2): 153-167. |
[4] | 陈相颖, 李梦玮, 王颖, 陈权, 徐寒梅. 小开放阅读框编码微肽的研究进展[J]. 遗传, 2021, 43(8): 737-746. |
[5] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[6] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[7] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[8] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[9] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[10] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[11] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[12] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[13] | 李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉. 竞争性内源RNA的生物学功能及其调控[J]. 遗传, 2015, 37(8): 756-764. |
[14] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[15] | 杨峰, 易凡, 曹慧青, 梁子才, 杜权. 长链非编码RNA研究进展[J]. 遗传, 2014, 36(5): 456-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: