遗传 ›› 2022, Vol. 44 ›› Issue (9): 745-755.doi: 10.16288/j.yczz.22-213
收稿日期:2022-06-22
修回日期:2022-08-01
出版日期:2022-09-20
发布日期:2022-08-15
作者简介:郝庆刚,在读博士研究生,研究方向:细胞生物学。E-mail: 基金资助:
Qinggang Hao1(
), Fenggui Sun2, Chenghao Yan1, Jianwei Sun1(
)
Received:2022-06-22
Revised:2022-08-01
Published:2022-09-20
Online:2022-08-15
Supported by:摘要:
基质金属蛋白酶(matrix metallopeptidase, MMPs)家族是一类锌依赖性内肽酶,可降解大多数细胞外基质。MT1-MMP是MMPs家族的重要成员,定位在细胞膜上,并在多种肿瘤中高表达。MT1-MMP通过影响细胞外基质重塑、血管生成、脂质代谢、炎症反应等过程促进肿瘤转移。然而,其具体的调控作用机制仍未完全阐明。本文综述了目前MT1-MMP在各系统肿瘤中的最新研究进展,总结并探讨了其在肿瘤中的促转移调控机制,为其在肿瘤领域的深入研究和应用提供借鉴和参考。
郝庆刚, 孙凤桂, 严程浩, 孙建伟. MT1-MMP在肿瘤转移中的研究进展[J]. 遗传, 2022, 44(9): 745-755.
Qinggang Hao, Fenggui Sun, Chenghao Yan, Jianwei Sun. Progress on the role and mechanism of MT1-MMP in tumor metastasis[J]. Hereditas(Beijing), 2022, 44(9): 745-755.
| [1] | Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M . A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature, 1994,370(6484):61-65. |
| [2] | Hu Y, Wu FX, Liu YK, Zhao Q, Tang H . DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A. Clin Epigenetics, 2019,11(1):186. |
| [3] | Kudelski J, Młynarczyk G, Darewicz B, Bruczko- Goralewska M, Romanowicz L . Dominative role of MMP- 14 over MMP-15 in human urinary bladder carcinoma on the basis of its enhanced specific activity. Medicine (Baltimore), 2020,99(7):e19224. |
| [4] | Zhang Q, Lou L, Cai XL, Hao ZF, Nie SS, Liu Y, Su LR, Wu WX, Shen HT, Li YH . Clinical significance of AJUBA, YAP1, and MMP14 expression in esophageal squamous cell carcinoma. Int J Clin Exp Pathol, 2018,11(12):6018-6024. |
| [5] | Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali AN . Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis, 2017,38(8):766-780. |
| [6] | Golubkov VS, Chekanov AV, Cieplak P, Aleshin AE, Chernov AV, Zhu WH, Radichev IA, Zhang DH, Dong PD, Strongin AY . The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer and embryogenesis. J Biol Chem, 2010,285(46):35740-35749. |
| [7] | Noda K, Ishida S, Inoue M, Obata KI, Oguchi Y, Okada Y, Ikeda E . Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci, 2003,44(5):2163-2170. |
| [8] | Cao J, Kozarekar P, Pavlaki M, Chiarelli C, Bahou WF, Zucker S . Distinct roles for the catalytic and hemopexin domains of membrane type 1-matrix metalloproteinase in substrate degradation and cell migration. J Biol Chem, 2004,279(14):14129-14139. |
| [9] | Lu PF, Takai K, Weaver VM, Werb Z . Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol, 2011,3(12):a005058. |
| [10] | Barbolina MV, Stack MS . Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin Cell Dev Biol, 2008,19(1):24-33. |
| [11] | Hara T, Mimura K, Seiki M, Sakamoto T . Genetic dissection of proteolytic and non-proteolytic contributions of MT1-MMP to macrophage invasion. Biochem Biophys Res Commun, 2011,413(2):277-281. |
| [12] | Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, Davis GE . Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood, 2009,114(2):237-247. |
| [13] | Hawinkels LJAC, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CFM, ten Dijke P . Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res, 2010,70(10):4141-4150. |
| [14] | Yao GY, He P, Chen LJ, Hu XL, Gu F, Ye CS . MT1-MMP in breast cancer: induction of VEGF-C correlates with metastasis and poor prognosis. Cancer Cell Int, 2013,13(1):98. |
| [15] | Yana I, Sagara H, Takaki S, Takatsu K, Nakamura K, Nakao K, Katsuki M, Taniguchi SI, Aoki T, Sato H, Weiss SJ, Seiki M . Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J Cell Sci, 2007,120(Pt 9):1607-1614. |
| [16] | Szabova L, Yamada SS, Wimer H, Chrysovergis K, Ingvarsen S, Behrendt N, Engelholm LH, Holmbeck K . MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny. J Bone Miner Res, 2009,24(11):1905-1916. |
| [17] | Lu CL, Li XY, Hu YX, Rowe RG, Weiss SJ . MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood, 2010,115(2):221-229. |
| [18] | Nishida C, Kusubata K, Tashiro Y, Gritli I, Sato A, Ohki-Koizumi M, Morita Y, Nagano M, Sakamoto T, Koshikawa N, Kuchimaru T, Kizaka-Kondoh S, Seiki M, Nakauchi H, Heissig B, Hattori K . MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood, 2012,119(23):5405-5416. |
| [19] | Shirvaikar N, Marquez-Curtis LA, Ratajczak MZ, Janowska-Wieczorek A . Hyaluronic acid and thrombin upregulate MT1-MMP through PI3K and Rac-1 signaling and prime the homing-related responses of cord blood hematopoietic stem/progenitor cells. Stem Cells Dev, 2011,20(1):19-30. |
| [20] | Rudenko G, Henry L, Henderson K, Ichtchenko K, Brown MS, Goldstein JL, Deisenhofer J . Structure of the LDL receptor extracellular domain at endosomal pH. Science, 2002,298(5602):2353-2358. |
| [21] | Johnson JL, Sala-Newby GB, Ismail Y, Aguilera CM, Newby AC . Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. Arterioscler Thromb Vasc Biol, 2008,28(9):1647-1653. |
| [22] | Hwang IK, Park SM, Kim SY, Lee ST . A proteomic approach to identify substrates of matrix metalloproteinase-14 in human plasma. Biochim Biophys Acta, 2004,1702(1):79-87. |
| [23] | Yu XH, Zhang DW, Zheng XL, Tang CK . Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res, 2019,73:65-91. |
| [24] | Actis Dato V, Chiabrando GA . The role of low-density lipoprotein receptor-Related protein 1 in lipid metabolism, glucose homeostasis and inflammation. Int J Mol Sci, 2018,19(6):1780. |
| [25] | Sathyamoorthy T, Tezera LB, Walker NF, Brilha S, Saraiva L, Mauri FA, Wilkinson RJ, Friedland JS, Elkington PT . Membrane type 1 matrix metalloproteinase regulates monocyte migration and collagen destruction in tuberculosis. J Immunol, 2015,195(3):882-891. |
| [26] | Kaneko K, Williams RO, Dransfield DT, Nixon AE, Sandison A, Itoh Y . Selective inhibition of membrane type 1 matrix metalloproteinase abrogates progression of experimental inflammatory arthritis: synergy with tumor necrosis factor blockade. Arthritis Rheumatol, 2016,68(2):521-531. |
| [27] | Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P . MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood, 2007,109(9):4055-4063. |
| [28] | Ip YC, Cheung ST, Fan ST . Atypical localization of membrane type 1-matrix metalloproteinase in the nucleus is associated with aggressive features of hepatocellular carcinoma. Mol Carcinog, 2007,46(3):225-230. |
| [29] | Li WF, Li SZ, Deng L, Yang SB, Li MZ, Long S, Chen SL, Lin FX, Xiao LB . Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biol, 2015,36(9):6883-6889. |
| [30] | Ip YC, Cheung ST, Leung KL, Fan ST . Mechanism of metastasis by membrane type 1-matrix metalloproteinase in hepatocellular carcinoma. World J Gastroenterol, 2005,11(40):6269-6276. |
| [31] | Dangi-Garimella S, Krantz SB, Barron MR, Shields MA, Heiferman MJ, Grippo PJ, Bentrem DJ, Munshi HG . Three-dimensional collagen I promotes gemcitabine resistance in pancreatic cancer through MT1-MMP- mediated expression of HMGA2. Cancer Res, 2011,71(3):1019-1028. |
| [32] | He L, Chu D, Li X, Zheng JY, Liu SH, Li JP, Zhao QC, Ji G . Matrix metalloproteinase-14 is a negative prognostic marker for patients with gastric cancer. Dig Dis Sci, 2013,58(5):1264-1270. |
| [33] | Akanuma N, Hoshino I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, Yusup G, Qin W, Toyozumi T, Takahashi M, Suito H, Hu X, Sekino N, Matsubara H . MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer, 2014,110(1):189-198. |
| [34] | Cui GF, Cai F, Ding ZW, Gao L . MMP14 predicts a poor prognosis in patients with colorectal cancer. Hum Pathol, 2019,83:36-42. |
| [35] | Zhang YN . miR-10a involed in metastasis of colon cancer by targeting matrix metalloproteninases 14(MMP14) [Dissertation]. Tianjing Medical University, 2007. |
| 张英楠 . miR-10a通过靶定基质金属蛋白酶14(MMP14)参与结肠癌转移的调控[学位论文]. 天津医科大学. 2007 | |
| [36] | Weng MT, Tsao PN, Lin HL, Tung CC, Change MC, Chang YT, Wong JM, Wei SC . Hes1 increases the invasion ability of colorectal cancer cells via the STAT3-MMP14 pathway. PLoS One, 2015,10(12):e0144322. |
| [37] | Yamamoto H, Noura S, Okami J, Uemura M, Takemasa I, Ikeda M, Ishii H, Sekimoto M, Matsuura N, Monden M, Mori M . Overexpression of MT1-MMP is insufficient to increase experimental liver metastasis of human colon cancer cells. Int J Mol Med, 2008,22(6):757-761. |
| [38] | Eiró N, González LO, Cid S, Andicoechea A, Vizoso FJ . Matrix metalloproteases expression in different histological types of colorectal polyps. Rev Esp Enferm Dig, 2017,109(6):414-420. |
| [39] | Mahimkar R, Alfonso-Jaume MA, Cape LM, Dahiya R, Lovett DH . Graded activation of the MEK1/MT1-MMP axis determines renal epithelial cell tumor phenotype. Carcinogenesis, 2011,32(12):1806-1814. |
| [40] | Sounni NE, Rozanov DV, Remacle AG, Golubkov VS, Noel A, Strongin AY . Timp-2 binding with cellular MT1-MMP stimulates invasion-promoting MEK/ERK signaling in cancer cells. Int J Cancer, 2010,126(5):1067-1078. |
| [41] | Cao J, Chiarelli C, Richman O, Zarrabi K, Kozarekar P, Zucker S . Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J Biol Chem, 2008,283(10):6232-6240. |
| [42] | Sabbota AL, Kim HRC, Zhe XN, Fridman R, Bonfil RD, Cher ML . Shedding of RANKL by tumor-associated MT1-MMP activates Src-dependent prostate cancer cell migration. Cancer Res, 2010,70(13):5558-5566. |
| [43] | Saeb-Parsy K, Veerakumarasivam A, Wallard MJ, Thorne N, Kawano Y, Murphy G, Neal DE, Mills IG, Kelly JD . MT1-MMP regulates urothelial cell invasion via transcriptional regulation of Dickkopf-3. Br J Cancer, 2008,99(4):663-669. |
| [44] | Annabi B, Lachambre M, Bousquet-Gagnon N, Pagé M, Gingras D, Béliveau R . Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem J, 2001,353(Pt 3):547-553. |
| [45] | Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Béliveau R . Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem, 2004,279(50):52132-52140. |
| [46] | Remacle A, Murphy G, Roghi C . Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. J Cell Sci, 2003,116(Pt 19):3905-3916. |
| [47] | Gálvez BG, Matías-Román S, Yáñez-Mó M, Vicente- Manzanares M, Sánchez-Madrid F, Arroyo AG . Caveolae are a novel pathway for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. Mol Biol Cell, 2004,15(2):678-687. |
| [48] | Wang L, Yuan J, Tu YY, Mao XG, He SM, Fu GQ, Zong JH, Zhang YS . Co-expression of MMP-14 and MMP-19 predicts poor survival in human glioma. Clin Transl Oncol, 2013,15(2):139-145. |
| [49] | Annabi B, Vaillancourt-Jean E, Béliveau R . MT1-MMP expression level status dictates the in vitro action of lupeol on inflammatory biomarkers MMP-9 and COX-2 in medulloblastoma cells. Inflammopharmacology, 2013,21(1):91-99. |
| [50] | Barbolina MV, Adley BP, Ariztia EV, Liu YY, Stack MS . Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J Biol Chem, 2007,282(7):4924-4931. |
| [51] | Sakata K, Shigemasa K, Nagai N, Ohama K . Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary. Int J Oncol, 2000,17(4):673-681. |
| [52] | Ellerbroek SM, Fishman DA, Kearns AS, Bafetti LM, Stack MS . Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase through beta1 integrin. Cancer Res, 1999,59(7):1635-1641. |
| [53] | Koshikawa N, Mizushima H, Minegishi T, Eguchi F, Yotsumoto F, Nabeshima K, Miyamoto S, Mekada E, Seiki M . Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. Cancer Sci, 2011,102(1):111-116. |
| [54] | Sneeggen M, Pedersen NM, Campsteijn C, Haugsten EM, Stenmark H, Schink KO . WDFY2 restrains matrix metalloproteinase secretion and cell invasion by controlling VAMP3-dependent recycling. Nat Commun, 2019,10(1):2850. |
| [55] | Zhu DJ, Ye M, Zhang W . E6/E7 oncoproteins of high risk HPV-16 upregulate MT1-MMP, MMP-2 and MMP-9 and promote the migration of cervical cancer cells. Int J Clin Exp Pathol, 2015,8(5):4981-4989. |
| [56] | Li M, Ren CX, Zhang JM, Xin XY, Hua T, Wang HB, Wang HB . The effects of miR-195-5p/MMP14 on proliferation and invasion of cervical carcinoma cells through TNF signaling pathway based on bioinformatics analysis of microarray profiling. Cell Physiol Biochem, 2018,50(4):1398-1413. |
| [57] | Wang HY, Zhang XH, Huang LM, Li J, Qu SY, Pan FL . Matrix metalloproteinase-14 expression and its prognostic value in cervical carcinoma. Cell Biochem Biophys, 2014,70(2):729-734. |
| [58] | Yan TH, Lin ZH, Jiang JH, Lu SW, Que HX, Chen MA, He XS, Que GB, Xiao JN, Chen YQ . Matrix metalloproteinase 14 overexpression is correlated with the progression and poor prognosis of nasopharyngeal carcinoma. Arch Med Res, 2015,46(3):186-192. |
| [59] | Wang ZQ, Zhang F, He JQ, Wu P, Tay LWR, Cai M, Nian WQ, Weng YY, Qin L, Chang JT, McIntire LB, Di Paolo G, Xu JM, Peng JM, Du GW. Binding of PLD2-generated phosphatidic acid to KIF5B promotes MT1-MMP surface trafficking and lung metastasis of mouse breast cancer cells. Dev Cell, 2017, 43(2): 186-197.e7. |
| [60] | Xu M, Wang YZ. miR-133a suppresses cell proliferation, migration and invasion in human lung cancer by targeting MMP-14. Oncol Rep, 2013,30(3):1398-1404. |
| [61] | Bonnomet A, Polette M, Strumane K, Gilles C, Dalstein V, Kileztky C, Berx G, van Roy F, Birembaut P, Nawrocki- Raby B . The E-cadherin-repressed hNanos1 gene induces tumor cell invasion by upregulating MT1-MMP expression. Oncogene, 2008,27(26):3692-3699. |
| [62] | Liu YH, Tang PZ, Liu ZH, Xu ZG, Qi YF, Li AD, Ding F, Zhang LY, Luo AP . Gene expression of matrix metalloproteinase 14 in laryngeal squamous cell carcinoma. Zhonghua Er Bi Yan Hou Ke Za Zhi, 2004,39(8):501-506. |
| [63] | Yoshida S, Takahashi H . Expression of extracellular matrix molecules in brain metastasis. J Surg Oncol, 2009,100(1):65-68. |
| [64] | Turunen SP, Tatti-Bugaeva O, Lehti K . Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Biochim Biophys Acta Mol Cell Res, 2017,864(11 Pt A):1974-1988. |
| [65] | Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R . Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell, 2003,14(3):1074-1084. |
| [66] | Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ . Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell, 2003,114(1):33-45. |
| [67] | Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P, Basset P . Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA, 1995,92(7):2730-2734. |
| [68] | Engelholm LH, Melander MC, Hald A, Persson M, Madsen DH, Jürgensen HJ, Johansson K, Nielsen C, Nørregaard KS, Ingvarsen SZ, Kjaer A, Trovik CS, Laerum OD, Bugge TH, Eide J, Behrendt N . Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180. J Pathol, 2016,238(1):120-133. |
| [69] | Rossé C, Lodillinsky C, Fuhrmann L, Nourieh M, Monteiro P, Irondelle M, Lagoutte E, Vacher S, Waharte F, Paul-Gilloteaux P, Romao M, Sengmanivong L, Linch M, van Lint J, Raposo G, Vincent-Salomon A, Bièche I, Parker PJ, Chavrier P . Control of MT1-MMP transport by atypical PKC during breast-cancer progression. Proc Natl Acad Sci USA, 2014,111(18):E1872-E1879. |
| [70] | Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ . A cancer cell metalloprotease triad regulates the basement membrane transmigration program . Genes Dev, 2006,20(19):2673-2686. |
| [71] | Steffen A, Le Dez G, Poincloux R, Recchi C, Nassoy P, Rottner K, Galli T, Chavrier P . MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7. Curr Biol, 2008,18(12):926-931. |
| [72] | Sugiyama N, Gucciardo E, Tatti O, Varjosalo M, Hyytiäinen M, Gstaiger M, Lehti K . EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. J Cell Biol, 2013,201(3):467-484. |
| [73] | Liu JH, Zhang X, Zhang HC, Guo JW, Zuo LF. Expression of β-catenin and Axin in esophageal carcinoma and its relationship with invasion and metastasis. In: The 5th Chinese Oncology Academic Conference and the 7th Cross-strait Oncology Academic Conference, the International Society of Cancer Cell and Gene Therapy Conference, and the 2nd China-japan Oncology Interventional Therapy Academic Conference, 2008. |
| 刘江惠, 张欣, 张会超, 郭建文, 左连富 . β-catenin与Axin在食管癌中的表达及与浸润转移的关系. 见: 第五届中国肿瘤学术大会暨第七届海峡两岸肿瘤学术会议、国际肿瘤细胞与基因治疗学会会议、第二届中日肿瘤介入治疗学术会议, 2008. | |
| [74] | Diomedi-Camassei F, Boldrini R, Ravà L, Donfrancesco A, Boglino C, Messina E, Dominici C, Callea F . Different pattern of matrix metalloproteinases expression in alveolar versus embryonal rhabdomyosarcoma. J Pediatr Surg, 2004,39(11):1673-1679. |
| [75] | Yan TH, Lin ZH, Jiang JH, Lu SW, Chen MA, Que HX, He XS, Que GB, Mao JF, Xiao JN, Zheng QW . MMP14 regulates cell migration and invasion through epithelial- mesenchymal transition in nasopharyngeal carcinoma. Am J Transl Res, 2015,7(5):950-958. |
| [76] | Remacle AG, Rozanov DV, Baciu PC, Chekanov AV, Golubkov VS, Strongin AY . The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci, 2005,118(Pt 21):4975-4984. |
| [77] | Wu YI, Munshi HG, Snipas SJ, Salvesen GS, Fridman R, Stack MS . Activation-coupled membrane-type 1 matrix metalloproteinase membrane trafficking. Biochem J, 2007,407(2):171-177. |
| [78] | Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI . Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell, 2000,11(12):4105-4116. |
| [79] | Seaman MNJ . Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol, 2004,165(1):111-122. |
| [80] | Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JRT, van Heesbeen RGHP, Middelkoop TC, Basler K, Cullen PJ, Korswagen HC . A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol, 2011,13(8):914-923. |
| [81] | Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC, Datta S . SNX27- retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol, 2020,219(1):e201812098. |
| [82] | Uekita T, Itoh Y, Yana I, Ohno H, Seiki M . Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol, 2001,155(7):1345-1356. |
| [83] | Jiang A, Lehti K, Wang X, Weiss SJ, Keski-Oja J, Pei D . Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proc Natl Acad Sci USA, 2001,98(24):13693-13698. |
| [84] | Schröder HM, Hoffmann SC, Hecker M, Korff T, Ludwig T . The tetraspanin network modulates MT1-MMP cell surface trafficking. Int J Biochem Cell Biol, 2013,45(6):1133-1144. |
| [85] | Takino T, Miyamori H, Kawaguchi N, Uekita T, Seiki M, Sato H . Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun, 2003,304(1):160-166. |
| [86] | Lafleur MA, Xu DS, Hemler ME . Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase- dependent pericellular proteolysis. Mol Biol Cell, 2009,20(7):2030-2040. |
| [87] | Jiang BJ, Liu J, Lee MH . Targeting a designer TIMP-1 to the cell durface for effective MT1-MMP inhibition: a potential role for the prion protein in renal carcinoma therapy. Molecules, 2019,24(2):255. |
| [88] | Vincent ZL, Mitchell MD, Ponnampalam AP . Regulation of MT1-MMP/MMP-2/TIMP-2 axis in human placenta. J Inflamm Res, 2015,8:193-200. |
| [89] | Wang X, Ma DW, Keski-Oja J, Pei DQ . Co-recycling of MT1-MMP and MT3-MMP through the trans-Golgi network. Identification of DKV582 as a recycling signal. J Biol Chem, 2004,279(10):9331-9336. |
| [90] | Sato H, Takino T . Coordinate action of membrane-type matrix metalloproteinase-1 (MT1-MMP) and MMP-2 enhances pericellular proteolysis and invasion. Cancer Sci, 2010,101(4):843-847. |
| [91] | Chun TH, Sabeh F, Ota I, Murphy H, McDonagh KT, Holmbeck K, Birkedal-Hansen H, Allen ED, Weiss SJ. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol, 2004,167(4):757-767. |
| [92] | Lafleur MA, Handsley MM, Knäuper V, Murphy G, Edwards DR . Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci, 2002,115(Pt 17):3427-3438. |
| [93] | Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M . The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 2001,107(6):789-800. |
| [94] | Robinet A, Fahem A, Cauchard JH, Huet E, Vincent L, Lorimier S, Antonicelli F, Soria C, Crepin M, Hornebeck W, Bellon G . Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. J Cell Sci, 2005,118(Pt 2):343-356. |
| [1] | 张宗旺, 熊敬维. AARS1/2:从蛋白质翻译到代谢与免疫调控的双重功能[J]. 遗传, 2025, 47(9): 967-978. |
| [2] | 张宁, 田烨. 基于荧光蛋白的生物探针设计策略及其应用[J]. 遗传, 2025, 47(7): 711-728. |
| [3] | 安梦婷, 郭冠麟, 吴杰, 孙文靖, 贾学渊. 基于生物信息学分析胃癌双微体中增强子的调控机制[J]. 遗传, 2025, 47(5): 558-572. |
| [4] | 刘灿, 翟巍巍, 吕雪梅. 肿瘤演化过程中的进化生态:概念、应用与创新[J]. 遗传, 2025, 47(2): 228-236. |
| [5] | 寇玉晨, 谢一宁, 袁艳辉, 单晓昳, 张曦. 植物硝酸盐转运蛋白家族NPF及其蛋白修饰调控机制研究进展[J]. 遗传, 2025, 47(10): 1118-1131. |
| [6] | 张宏博, 孙凤桂, 孙建伟, 汤琦, 张旭. 乳腺肿瘤干细胞在乳腺癌发生、发展及耐药中的作用[J]. 遗传, 2025, 47(10): 1099-1117. |
| [7] | 王陈颖, 肖荟尹, 诸志鹏, 郑素雅, 徐良, 陈烨. 子宫平滑肌肉瘤的分子遗传学特征与研究进展[J]. 遗传, 2024, 46(8): 603-626. |
| [8] | 张译文, 黄琴, 吴艳芸, 孙月, 韦永龙. LIN28A/B在肿瘤发生发展中的作用研究进展[J]. 遗传, 2024, 46(6): 452-465. |
| [9] | 沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451. |
| [10] | 李卉, 吴光明. 肿瘤抑制蛋白PDCD4结构特性与疾病关系解析及研究进展[J]. 遗传, 2024, 46(4): 290-305. |
| [11] | 闫旭, 郭影, 孙冬琳, 吴楠, 金焰. 肿瘤抗血管生成治疗耐药机制[J]. 遗传, 2024, 46(11): 911-919. |
| [12] | 孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
| [13] | 严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
| [14] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
| [15] | 常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: