遗传 ›› 2016, Vol. 38 ›› Issue (8): 677-687.doi: 10.16288/j.yczz.16-031
• 综述 • 下一篇
刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊
收稿日期:
2016-01-18
修回日期:
2016-04-13
出版日期:
2016-08-20
发布日期:
2016-06-01
通讯作者:
曹墨菊,教授,博士生导师,研究方向:玉米雄性不育。E-mail: caomj@sicau.edu.cn
E-mail:liuluckforever@163.com
作者简介:
刘永明,博士研究生,专业方向:玉米生物技术育种。E-mail: liuluckforever@163.com
基金资助:
Yongming Liu, Ling Zhang, Tao Qiu, Zhuofan Zhao, Moju Cao
Received:
2016-01-18
Revised:
2016-04-13
Online:
2016-08-20
Published:
2016-06-01
Supported by:
摘要: 植物雄性不育是指植物雄蕊发育受阻不能产生正常有功能花粉的现象。植物雄性不育不仅是生殖生理研究的宝贵材料,也是植物杂种优势利用的重要工具。由于高通量转录组测序技术几乎可以检测细胞内所有mRNA及非编码RNA的信息,已被广泛应用于生命科学研究的各项领域。在植物雄性不育相关研究中,高通量转录组测序技术在不同物种、不同败育类型中的应用已有报道,这为研究者在转录组水平综合了解植物雄性不育的分子机制及代谢网络提供了帮助。本文从测序文库构建策略、差异表达基因、非编码RNA的功能特征等方面综述了高通量转录组测序在植物雄性不育机理方面的研究进展,并探讨了转录组测序技术在花粉败育机制解析及育性相关基因定位中的应用价值,以期为植物雄性不育的相关研究提供参考。
刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687.
Yongming Liu, Ling Zhang, Tao Qiu, Zhuofan Zhao, Moju Cao. Research progress on mechanisms of male sterility in plants based on high-throughput RNA sequencing[J]. Hereditas(Beijing), 2016, 38(8): 677-687.
[1] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet , 2009, 10(1): 57-63. [2] Qi YX, Liu YB, Rong WH. RNA-Seq and its applications: a new technology for transcriptomics. Hereditas (Beijing) , 2011, 33(11): 1191-1202. 祁云霞, 刘永斌, 荣威恒. 转录组研究新技术: RNA- Seq及其应用. 遗传, 2011, 33(11): 1191-1202. [3] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol , 2011, 29(7): 644-652. [4] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol , 2010, 28(5): 511-515. [5] Perez-Prat E, van Lookeren Campagne MM. Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci , 2002, 7(5): 199-203. [6] Gómez JF, Talle B, Wilson ZA. Anther and pollen development: A conserved developmental pathway. J Integr Plant Biol , 2015, 57(11): 876-891. [7] Guo JX, Liu YG. Molecular control of male reproductive development and pollen fertility in rice. J Integr Plant Biol , 2012, 54(12): 967-978. [8] Chen LT, Liu YG. Male sterility and fertility restoration in crops. Annu Rev Plant Biol , 2014, 65(1): 579-606. [9] Jeong HJ, Kang JH, Zhao MA, Kwon JK, Choi HS, Bae JH, Lee HA, Joung YH, Choi D, Kang BC. Tomato Male sterile 10 35 is essential for pollen development and meiosis in anthers. J Exp Bot , 2014, 65(22): 6693-6709. [10] Chen CM, Chen GJ, Cao BH, Lei JJ. Transcriptional profiling analysis of genic male sterile-fertile Capsicum annuum reveal candidate genes for pollen development and maturation by RNA-Seq technology. Plant Cell Tiss Organ Cult (PCTOC) , 2015, 122(2): 465-476. [11] An H, Yang ZH, Yi B, Wen J, Shen JX, Tu JX, Ma CZ, Fu TD. Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B . napus . BMC Genomics , 2014, 15(1): 258. [12] Li JJ, Han SH, Ding XL, He TT, Dai JY, Yang SP, Gai JY. Comparative transcriptome analysis between the cytoplasmic male sterile line NJCMS1A and its maintainer NJCMS1B in soybean ( Glycine max (L.) Merr.). PLoS One , 2015, 10(5): e126771. [13] Zhu QD, Song YL, Zhang GS, Ju L, Zhang J, Yu YA, Niu N, Wang JW, Ma SC. De novo assembly and transcriptome analysis of wheat with male sterility induced by the chemical hybridizing agent SQ-1. PLoS One , 2015, 10(4): e0123556. [14] Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics , 2015, 16(1): 183. [15] Tang ZH, Zhang LP, Xu CG, Yuan SH, Zhang FT, Zheng YL, Zhao CP. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol , 2012, 159(2): 721-738. [16] Yang P, Han JF, Huang JL. Transcriptome sequencing and de novo analysis of cytoplasmic male sterility and maintenance in JA-CMS cotton. PLoS One , 2014, 9(11): e112320. [17] Zheng BB, Wu XM, Ge XX, Deng XX, Grosser JW, Guo WW. Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS One , 2012, 7(8): e43758. [18] Wu YL, Min L, Wu ZC, Yang L, Zhu LF, Yang XY, Yuan DJ, Guo XP, Zhang XL. Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Sci Rep , 2015, 5: 9608. [19] Zhang YJ, Chen J, Liu JB, Xia MX, Wang W, Shen FF. Transcriptome analysis of early anther development of cotton revealed male sterility genes for major metabolic pathways. J Plant Growth Regul , 2015, 34(2): 223-232. [20] Zhang H, Egger RL, Kelliher T, Morrow D, Fernandes J, Nan GL, Walbot V. Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3 (Bethesda) , 2014, 4(6): 993-1010. [21] Zhai JX, Zhang H, Arikit S, Huang K, Nan GL, Walbot V, Meyers BC. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA , 2015, 112(10): 3146-3151. [22] Hou L, Xiao YH, Li XB, Wnag WF, Luo XY, Pei Y. The cDNA-AFLP differential display in developing anthers between cotton male sterile and fertile line of “Dong A”. Acta Genetica Sinica , 2002, 29(4): 359-363. 侯磊, 肖月华, 李先碧, 王文锋, 罗小英, 裴炎. 棉花洞A雄性不育系花药发育的mRNA差别显示. 遗传学报, 2002, 29(4): 359-363. [23] Wei MM, Wei HL, Wu M, Song MZ, Zhang JF, Yu JW, Fan SL, Yu SX. Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol , 2013, 13(1): 66. [24] Yan JJ, Zhang HY, Zheng YZ, Ding Y. Comparative expression profiling of miRNAs between the cytoplasmic male sterile line MeixiangA and its maintainer line MeixiangB during rice anther development. Planta , 2015, 241(1): 109-123. [25] Liu C, Ma N, Wang PY, Fu N, Shen HL. Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in chili pepper ( Capsicum annuum L.). PLoS One , 2013, 8(6): e65209. [26] Yan XH, Dong CH, Yu JY, Liu WH, Jiang CH, Liu J, Hu Q, Fang XP, Wei WH. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus . BMC Genomics , 2013, 14(1): 26. [27] Qu CM, Fu FY, Liu M, Zhao HY, Liu C, Li JN, Tang ZL, Xu XF, Qiu X, Wang R, Lu K. Comparative transcriptome analysis of recessive male sterility (RGMS) in sterile and fertile Brassica napus lines. PLoS One , 2015, 10(12): e0144118. [28] Ding XL, Li JJ, Zhang H, He TT, Han SH, Li YW, Yang SP, Gai JY. Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics , 2016, 17(1): 461. [29] Yu JH, Zhao YX, Qin YT, Yue B, Zheng YL, Xiao HL. Discovery of microRNAs associated with the S type cytoplasmic male sterility in maize. J Integr Agr , 2013, 12(2): 229-238. [30] Fang YN, Qiu WM, Wang Y, Wu XM, Xu Q, Guo WW. Identification of differentially expressed microRNAs from a male sterile Ponkan mandarin ( Citrus reticulata Blanco) and its fertile wild type by small RNA and degradome sequencing. Tree Genet Genomes , 2014, 10(6): 1567- 1581. [31] Mei SY, Liu TM, Wang ZW. Comparative transcriptome profile of the cytoplasmic male sterile and fertile floral buds of radish ( Raphanus sativus L.). Int J Mol Sci , 2016, 17(1): 42. [32] Zhu EG, You CJ, Wang SS, Cui J, Niu BX, Wang YX, Qi J, Ma H, Chang F. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J , 2015, 83(6): 976-990. [33] Zhao N, Xu XY, Wamboldt Y, Mackenzie SA, Yang XD, Hu ZY, Yang JH, Zhang MF. MutS HOMOLOG1 silencing mediates ORF220 substoichiometric shifting and causes male sterility in Brassica juncea . J Exp Bot , 2016, 67(1): 435-444. [34] Yang JH, Liu XY, Xu BC, Zhao N, Yang XD, Zhang MF. Identification of miRNAs and their targets using high- throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea . BMC Genomics , 2013, 14(1): 9. [35] Zhu Z, Zhou CC, Yang J. Molecular phenotypes associated with anomalous stamen development in Alternanthera philoxeroides . Front Plant Sci , 2015, 6: 242. [36] Chen P, Ran SM, Li R, Huang ZP, Qian JH, Yu ML, Zhou RY. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf ( Hibiscus cannabinus L.). Mol Breeding , 2014, 34(4): 1879-1891. [37] Rhee SJ, Seo M, Jang YJ, Cho S, Lee GP. Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics , 2015, 16(1): 601. [38] Jiang JX, Lv ML, Liang Y, Ma ZM, Cao JS. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis by high-throughput sequencing and degradome analysis. BMC Genomics , 2014, 15(1): 146. [39] Wei XC, Zhang XH, Yao QJ, Yuan YX, Li XX, Wei F, Zhao YY, Zhang Q, Wang ZY, Jiang WS, Zhang XW. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Front Plant Sci , 2015, 6: 894. [40] Shemesh-Mayer E, Ben-Michael T, Rotem N, Rabinowitch HD, Doron-Faigenboim A, Kosmala A, Perlikowski D, Sherman A, Kamenetsky R. Garlic ( Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. Front Plant Sci , 2015, 6: 271. [41] Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics , 2003, 19(3): 368-375. [42] Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, Tohge T, Ito T, Koyanagi M, Kitajima M, Takayama H, Saito K. A flavonoid 3- O -glucoside: 2"- O -glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana . Plant J , 2014, 79(5): 769-782. [43] Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK. MicroRNA156 : a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena . Plant Physiol , 2014, 164(2): 1011-1027. [44] Wang L, Sun SY, Jin JY, Fu DB, Yang XF, Weng XY, Xu CG, Li XH, Xiao JH, Zhang QF. Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci USA , 2015, 112(50): 15504-15509. [45] Nie Z, Ren ZY, Wang LB, Su SZ, Wei X, Zhang X, Wu L, Liu D, Tang HT, Liu HL, Zhang SZ, Gao SB. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize. Physiol Plant , 2016, 157(2): 161-174. [46] Xie ZX, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol , 2004, 2(5): e104. [47] Li XM, Sang YL, Zhao XY, Zhang XS. High-throughput sequencing of small RNAs from pollen and silk and characterization of miRNAs as candidate factors involved in pollen-silk interactions in maize. PLoS One , 2013, 8(8): e72852. [48] Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen R A, Vielle-Calzada JP. Control of female gamete formation by a small RNA pathway in Arabidopsis . Nature , 2010, 464(7288): 628-632. [49] Li ZF, Zhang YC, Chen YQ. miRNAs and lncRNAs in reproductive development. Plant Sci , 2015, 238: 46-52. [50] Niu SH, Liu C, Yuan HW, Li P, Li Y, Li W. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis . BMC Genomics , 2015, 16(1): 418. [51] Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development , 2006, 133(21): 4211-4218. [52] Xing SP, Salinas M, Höhmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis . Plant Cell , 2011, 22(12): 3935-3950. [53] Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA , 2012, 109(7): 2654-2659. [54] Zhou H, Liu QJ, Li J, Jiang DG, Zhou LY, Wu P, Lu S, Li F, Zhu LY, Liu ZL, Chen LT, Liu YG, Zhuang CX. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res , 2012, 22(4): 649- 660. [55] Luo Y, Guo ZH, Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol , 2013, 380(2): 133-144. [56] Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res , 2006, 16(5): 457-465. [57] Srivastava S, Zheng Y, Kudapa H, Jagadeeswaran G, Hivrale V, Varshney RK, Sunkar R. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. Plant Sci , 2015, 235: 46-57. [58] Wilson ZA, Zhang DB. From Arabidopsis to rice: pathways in pollen development. J Exp Bot , 2009, 60(5): 1479-1492. [59] Dukowic-Schulze S, Harris A, Li JH, Sundararajan A, Mudge J, Retzel EF, Pawlowski WP, Chen CB. Comparative transcriptomics of early meiosis in Arabidopsis and maize. J Genet Genomics , 2014, 41(3): 139-152. [60] Jiang Y, Zeng B, Zhao HN, Zhang M, Xie SJ, Lai JS. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize. J Integr Plant Biol , 2012, 54(9): 616-630. [61] Liu YM, Zhang L, Zhou JY, Cao MJ. Research progress of the bHLH transcription factors involved in genic male sterility in plants. Hereditas (Beijing) , 2015, 37(12): 1194-1203. 刘永明, 张玲, 周建瑜, 曹墨菊. 植物细胞核雄性不育相关bHLH转录因子研究进展. 遗传, 2015, 37(12): 1194-1203. [62] Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol , 2014, 15(12): 669. [63] Ma XD, Xing CZ, Guo LP, Gong YC, Wang HL, Zhao YL, Wu JY. Analysis of differentially expressed genes in genic male sterility cotton ( Gossypium hirsutum L.) using cDNA-AFLP. J Genet Genomics , 2007, 34(6): 536-543. [64] Liu XM, Liu Y, Liu C, Guan MX, Yang CP. Identification of genes associated with male sterility in a mutant of white birch ( Betula platyphylla Suk.). Gene , 2015, 574(2): 247-254. [65] Ma X, Feng BM, Ma H. AMS-dependent and independent regulation of anther transcriptome and comparison with those affected by other Arabidopsis anther genes. BMC Plant Biol , 2012, 12(1): 23. [66] Feng BM, Lu DH, Ma X, Peng YB, Sun YJ, Ning G, Ma H. Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. Plant J , 2012, 72(4): 612-624. [67] Zhou H, Zhou M, Yang YZ, Li J, Zhu LY, Jiang DG, Dong JF, Liu QJ, Gu LF, Zhou LY, Feng MJ, Qin P, Hu XC, Song CL, Shi JF, Song XW, Ni ED, Wu XJ, Deng QY, Liu ZL, Chen MS, Liu YG, Cao XF, Zhuang CX. RNase Z S1 processes Ub L40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun , 2014, 5: 4884. [68] Lu CR, Zou CS, Song GL. Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches. Hereditas (Beijing) , 2015, 37(8): 765-776. 陆才瑞, 邹长松, 宋国立. 高通量测序技术结合正向遗传学手段在基因定位研究中的应用. 遗传, 2015, 37(8): 765-776. [69] Zhang H, Liang WQ, Zhang DB. Research progress on tapetum programmed cell death. J Shanghai Jiaotong Univ (Agr Sci) , 2008, 26(1): 86-90. 张虹, 梁婉琪, 张大兵. 花药绒毡层细胞程序性死亡研究进展. 上海交通大学学报(农业科学版), 2008, 26(1): 86-90. [70] Ouyang YD, Liu YG, Zhang QF. Hybrid sterility in plant: stories from rice. Curr Opin Plant Biol , 2010, 13(2): 186-192. [71] Lee YP, Cho Y, Kim S. A high-resolution linkage map of the Rfd1 , a restorer-of-fertility locus for cytoplasmic male sterility in radish ( Raphanus sativus L.) produced by a combination of bulked segregant analysis and RNA-Seq. Theor Appl Genet , 2014, 127(10): 2243-2252. [72] Kim S, Kim CW, Park M, Choi D. Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion ( Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq. Theor Appl Genet , 2015, 128(11): 2289-2299. [73] Bisht DS, Chamola R, Nath M, Bhat SR. Molecular mapping of fertility restorer gene of an alloplasmic CMS system in Brassica juncea containing Moricandia arvensis cytoplasm. Mol Breeding , 2015, 35(1): 1-11. [74] Li X, Li L, Yan JB. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nat Commun , 2015, 6: 6648. (责任编委: 赵方庆) |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[3] | 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析[J]. 遗传, 2019, 41(11): 1050-1059. |
[4] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[5] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[6] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[7] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[8] | 杨莹,陈宇晟,孙宝发,杨运桂. RNA甲基化修饰调控和规律[J]. 遗传, 2018, 40(11): 964-976. |
[9] | 刘亚军,张峰,刘宏德,孙啸. 下一代测序技术在干细胞转录调控研究中的应用[J]. 遗传, 2017, 39(8): 717-725. |
[10] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[11] | 魏凯,马磊. 高通量测序时代下持家基因定义的发展[J]. 遗传, 2017, 39(2): 127-134. |
[12] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[13] | 李光奇, 孙从佼, 吴桂琴, 石凤英, 刘爱巧, 孙皓, 杨宁. 利用转录组测序筛选鸡蛋褐壳性状相关基因[J]. 遗传, 2017, 39(11): 1102-1111. |
[14] | 朱帅旗, 龚一富, 杭雨晴, 刘浩, 王何瑜. 绿色杜氏藻转录组分析[J]. 遗传, 2015, 37(8): 828-836. |
[15] | 李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉. 竞争性内源RNA的生物学功能及其调控[J]. 遗传, 2015, 37(8): 756-764. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: