遗传 ›› 2016, Vol. 38 ›› Issue (12): 1043-1055.doi: 10.16288/j.yczz.16-238
• 综述 • 下一篇
刘姝丽,张胜利,俞英
收稿日期:
2016-07-04
修回日期:
2016-11-13
出版日期:
2016-12-20
发布日期:
2016-11-17
通讯作者:
俞英,副教授,博士生导师,研究方向:动物分子抗病育种及表观遗传调控。E-mail: yuying@cau.edu.cn 张胜利,男,教授,博士生导师,研究方向:奶牛育种。E-mail: zhang62733697@163.com
作者简介:
刘姝丽,博士研究生,专业方向:动物分子数量遗传学。E-mail: liushulihaha@163.com
基金资助:
Shuli Liu, Shengli Zhang, Ying Yu
Received:
2016-07-04
Revised:
2016-11-13
Online:
2016-12-20
Published:
2016-11-17
Supported by:
摘要: 同卵双胞胎来源于同一个受精卵,DNA序列基本一致,但在某些重要表型上如复杂疾病,并不完全一样。利用表型不一致的同卵双胞胎进行研究,能在遗传背景、母体效应、年龄性别效应等一致的基础上,深入研究分析复杂性状的表观调控机制。而DNA甲基化是最为稳定的一类表观遗传修饰。在人类中,利用同卵双胞胎对印记异常疾病、精神类疾病、自身免疫病及癌症等疾病的DNA甲基化调控研究已经揭示了多个致病基因,为研究疾病的表观调控以及表观遗传学药物的应用打下了基础。本文着重对同卵双胞胎DNA甲基化状态、DNA甲基化遗传力计算以及复杂性状DNA甲基化调控的研究应用及其进展展开综述,以期为复杂性状表观调控机制研究提供借鉴和参考。
刘姝丽,张胜利,俞英. 同卵双胞胎在复杂性状DNA甲基化调控机制研究中的应用[J]. 遗传, 2016, 38(12): 1043-1055.
Shuli Liu, Shengli Zhang, Ying Yu. Research progress of regulatory mechanism of DNA methylation in complex traits using monozygotic twins[J]. Hereditas(Beijing), 2016, 38(12): 1043-1055.
[1] Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22, 650 young Finnish twin pairs: a nationwide follow-up study. Diabetes, 2003, 52(4): 1052–1055. [2] Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J, Steng?rd J, Kes?niemi YA. Concordance for type 1 (insulin-dependent) and type 2 (non-ins?ulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia, 1992, 35(11): 1060–1067. [3] Matsuda A, Kuzuya T. Diabetic twins in Japan. Diabetes Res Clin Pract, 1994, 24 (Suppl.): S63–S67. [4] Castellani CA, Laufer BI, Melka MG, Diehl EJ, O'Reilly RL, Singh SM. DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med Genomics, 2015, 8: 17. [5] Persico AM, Napolioni V. Autism genetics. Behav Brain Res, 2013, 251: 95–112. [6] Handunnetthi L, Handel AE, Ramagopalan SV. Contribution of genetic, epigenetic and transcriptomic differences to twin discordance in multiple sclerosis. Expert Rev Neurother, 2010, 10(9): 1379–1381. [7] Galton F. English men of science, their nature and nurture. London, UK: Macmillan, UK, 1874(7): 227–236. E, Powell JE, Ollikainen M, Novakovic B, Li X, Andronikos R, Cruickshank MN, Conneely KN, Smith AK, Alisch RS, Morley R, Visscher PM, Craig JM, Saffery R. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res, 2012, 22(8): 1395–1406. [9] Lopriore E, Slaghekke F, Vandenbussche FP, Middeldorp JM, Walther FJ, Oepkes D. Cerebral injury in monochorionic twins with selective intrauterine growth restriction and/or birthweight discordance. Am J Obstet Gynecol, 2008, 199(6): 628.e1–628.e5. [10] Han ZY, Fang Q, Luo YM, Hou HY, Chen ML, He ZM, Song HL. Intrauterine growth characteristics of twins and those twins discordant birthweight. Chin J Obstet Gynecol, 2012, 47(5): 337–341. 韩振艳, 方群, 罗艳敏, 侯红瑛, 陈敏玲, 何志明, 宋花蕾. 双胎及出生体质量不同一性双胎胎儿宫内生长发育的特点. 中华妇产科杂志, 2012, 47(5): 337–341. [11] Bahtiyar MO, Dulay AT, Weeks BP, Friedman AH, Copel JA. Prevalence of congenital heart defects in monochorionic/diamniotic twin gestations: a systematic literature review. J Ultrasound Med, 2007, 26(11): 1491–1498. [12] Pettit KE, Merchant M, Machin GA, Tacy TA, Norton ME. Congenital heart defects in a large, unselected cohort of monochorionic twins. J Perinatol, 2013, 33(6): 457–461. [13] Sakuntabhai A, Ruiz-Perez V, Carter S, Jacobsen N, Burge S, Monk S, Smith M, Munro CS, O'Donovan M, Craddock N, Kucherlapati R, Rees JL, Owen M, Lathrop GM, Monaco AP, Strachan T, Hovnanian A. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet, 1999, 21(3): 271–277. [14] Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, de Lima RL, Daack-Hirsch S, Sander A, McDonald-McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richieri-Costa A, Dixon MJ, Murray JC. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet, 2002, 32(2): 285–289. [15] Vogt J, Kohlhase J, Morlot S, Kluwe L, Mautner VF, Cooper DN, Kehrer-Sawatzki H. Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. Hum Mutat, 2011, 32(6): E2134– E2147. [16] Razzaghian HR, Shahi MH, Forsberg LA, de St?hl TD, Absher D, Dahl N, Westerman MP, Dumanski JP. Somatic mosaicism for chromosome X and Y aneuploidies in monozygotic twins heterozygous for sickle cell disease mutation. Am J Med Genet A, 2010, 152A(10): 2595–2598. [17] Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B, Moran M, Hanrahan D, Deonna TW, Korff CM, Webb D, Ennis S, Lynch SA, King MD. Towards the identification of a genetic basis for Landau- Kleffner syndrome. Epilepsia, 2014, 55(6): 858–865. [18] Rijntjes-Jacobs EG, Lopriore E, Steggerda SJ, Kant SG, Walther FJ. Discordance for Schimmelpenning-Feue?rstein-Mims syndrome in monochorionic twins supports the concept of a postzygotic mutation. Am J Med Genet A, 2010, 152A(11): 2816–2819. [19] Jess T, Riis L, Jespersgaard C, Hougs L, Andersen PS, Orholm MK, Binder V, Munkholm P. Disease concordance, zygosity, and NOD2/CARD15 status: follow-up of a population-based cohort of Danish twins with inflammatory bowel disease. Am J Gastroenterol, 2005, 100(11): 2486–2492. [20] Bruder CEG, Piotrowski A, Gijsbers AACJ, Andersson R, Erickson S, Diaz De St?hl TD, Menzel U, Sandgren J, von Tell D, Poplawski A, Crowley M, Crasto C, Partridge EC, Tiwari H, Allison DB, Komorowski J, van Ommen GJ, Boomsma DI, Pedersen NL, den Dunnen JT, Wirdefeldt K, Dumanski JP. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number- variation profiles. Am J Hum Genet, 2008, 82(3): 763–771. [21] Sasaki H, Emi M, Iijima H, Ito N, Sato H, Yabe I, Kato T, Utsumi J, Matsubara K. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol Brain, 2011, 4: 24. [22] Castellani CA, Awamleh Z, Melka MG, O'Reilly RL, Singh SM. Copy number variation distribution in six monozygotic twin pairs discordant for schizophrenia. Twin Res Hum Genet, 2014, 17(2): 108–120. [23] Breckpot J, Thienpont B, Gewillig M, Allegaert K, Vermeesch JR, Devriendt K. Differences in copy number variation between discordant monozygotic twins as a model for exploring chromosomal mosaicism in congenital heart defects. Mol Syndromol, 2012, 2(2): 81–87. [24] Grayson BL, Smith ME, Thomas JW, Wang L, Dexheimer P, Jeffrey J, Fain PR, Nanduri P, Eisenbarth GS, Aune TM. Genome-wide analysis of copy number variation in type 1 diabetes. PLoS One, 2010, 5(11): e15393. [25] Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GHT, Wong AHC, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet, 2009, 41(2): 240–245. [26] Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet, 1975, 14(1): 9–25. [27] Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science, 1975, 187 (4173): 226–232. [28] Iguchi-Ariga SM, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGA?CGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev, 1989, 3(5): 612–619. [29] Angrisano T, Lembo F, Pero R, Natale F, Fusco A, Avvedimento VE, Bruni CB, Chiariotti L. TACC3 mediates the association of MBD2 with histone acetyltransferases and relieves transcriptional repression of methylated promoters. Nucleic Acids Res, 2006, 34(1): 364–372. [30] Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM. Targeted and genome- scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 2009, 27(4): 361–368. [31] Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet, 2011, 20(4): 670– 680. [32] Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 2007, 39(1): 61–69. [33] Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 2010, 328(5980): 916–919. [34] Su JM, Wang YS, Xing XP, Liu J, Zhang Y. Genome-wide analysis of DNA methylation in bovine placentas. BMC Genomics, 2014, 15: 12. [35] Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9(6): 465–476. [36] Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA, 2010, 107(19): 8689–8694. [37] Liang GN, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol, 2002, 22(2): 480–491. [38] Guo JU, Su YJ, Zhong C, Ming GL, Song HJ. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 2011, 145(3): 423–434. [39] Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethyl?cytosine. Science, 2013, 339(6118): 448–452. [40] Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics, 2014, 6(4): 427–443. [41] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271): 315–322. [42] Laurent L, Wong E, Li GL, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL. Dynamic changes in the human methylome during differentiation. Genome Res, 2010, 20(3): 320–331. [43] Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 2012, 148(4): 816–831. [44] Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet, 2013, 9(4): e1003439. [45] Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Su?er D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 2005, 102(30): 10604–10609. [46] Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R, Craig JM. Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol, 2013, 14(5): R42. [47] Gervin K, Hammer? M, Akselsen HE, Moe R, Nyg?rd H, Brandt I, Gjessing HK, Harris JR, Undlien DE, Lyle R. Extensive variation and low heritability of DNA methylation identified in a twin study. Genome Res, 2011, 21(11): 1813–1821. [48] Lévesque ML, Casey KF, Szyf M, Ismaylova E, Ly V, Verner MP, Suderman M, Brendgen M, Vitaro F, Dionne G, Boivin M, Tremblay RE, Booij L. Genome-wide DNA methylation variability in adolescent monozygotic twins followed since birth. Epigenetics, 2014, 9(10): 1410– 1421. [49] Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA, 2012, 109(26): 10522–10527. [50] Wong CCY, Caspi A, Williams B, Craig IW, Houts R, Ambler A, Moffitt TE, Mill J. A longitudinal study of epigenetic variation in twins. Epigenetics, 2010, 5(6): 516–526. [51] Grundberg E, Meduri E, Sandling JK, Hedman ?K, Keildson S, Buil A, Busche S, Yuan W, Nisbet J, Sekowska M, Wilk A, Barrett A, Small KS, Ge B, Caron M, Shin SY, Lathrop M, Dermitzakis ET, McCarthy MI, Spector TD, Bell JT, Deloukas P. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Hum Genet, 2013, 93(5): 876–890. [52] Zhao J, Forsberg CW, Goldberg J, Smith NL, Vaccarino V. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample. BMC Med Genet, 2012, 13: 100. [53] Selmi C, Feghali-Bostwick CA, Lleo A, Lombardi SA, De Santis M, Cavaciocchi F, Zammataro L, Mitchell MM, Lasalle JM, Medsger T Jr, Gershwin ME. X chromosome gene methylation in peripheral lymphocytes from monozygotic twins discordant for scleroderma. Clin Exp Immunol, 2012, 169(3): 253–262. [54] Gervin K, Vigeland MD, Mattingsdal M, Hammer? M, Nyg?rd H, Olsen AO, Brandt I, Harris JR, Undlien DE, Lyle R. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet, 2012, 8(1): e1002454. [55] Zhao J, Goldberg J, Bremner JD, Vaccarino V. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes, 2012, 61(2): 542–546. [56] Yuan W, Xia YD, Bell CG, Yet I, Ferreira T, Ward KJ, Gao F, Loomis AK, Hyde CL, Wu HL, Lu HL, Liu Y, Small KS, Vi?uela A, Morris AP, Berdasco M, Esteller M, Brosnan MJ, Deloukas P, McCarthy MI, John SL, Bell JT, Wang J, Spector TD. An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nat Commun, 2014, 5: 5719. [57] Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull, 2003, 29(1): 169–178. [58] Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulopoulou T, Vonk R, van der Schot AC, Nolen W, Kahn RS, McGuffin P, Murray RM, Craig IW. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet, 2008, 147B(4): 459–462. [59] Zhao JY, Goldberg J, Bremner JD, Vaccarino V. Association between promoter methylation of serotonin transporter gene and depressive symptoms: a monozygotic twin study. Psychosom Med, 2013, 75(6): 523–529. [60] Dempster EL, Wong CCY, Lester KJ, Burrage J, Gregory AM, Mill J, Eley TC. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry, 2014, 76(12): 977–983. [61] Davies MN, Krause L, Bell JT, Gao F, Ward KJ, Wu HL, Lu HL, Liu Y, Tsai PC, Collier DA, Murphy T, Dempster E, Mill J, Battle A, Mostafavi S, Zhu XW, Henders A, Byrne E, Wray NR, Martin NG, Spector TD, Wang J. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol, 2014, 15(4): R56. [62] Melka MG, Castellani CA, O'Reilly R, Singh SM. Insights into the origin of DNA methylation differences between monozygotic twins discordant for schizophrenia. J Mol Psychiatry, 2015, 3(1): 7. [63] Córdova-Palomera A, Fatjó-Vilas M, Palma-Gudiel H, Blasco-Fontecilla H, Kebir O, Fa?anás L. Further evidence of DEPDC7 DNA hypomethylation in depression: A study in adult twins. Eur Psychiatry, 2015, 30(6): 715–718. [64] Galetzka D, Hansmann T, El Hajj N, Weis E, Irmscher B, Ludwig M, Schneider-R?tzke B, Kohlschmidt N, Beyer V, Bartsch O, Zechner U, Spix C, Haaf T. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer. Epigenetics-US, 2012, 7(1): 47–54. [65] Kratz CP, Edelman DC, Wang Y, Meltzer PS, Greene MH. Genetic and epigenetic analysis of monozygotic twins discordant for testicular cancer. Int J Mol Epidemiol Genet, 2014, 5(3): 135–139. [66] Mill J, Dempster E, Caspi A, Williams B, Moffitt T, Craig I. Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet, 2006, 141B(4): 421–425. [67] Souren NYP, Lutsik P, Gasparoni G, Tierling S, Gries J, Riemenschneider M, Fryns JP, Derom C, Zeegers MP, Walter J. Adult monozygotic twins discordant for intra-uterine growth have indistinguishable genome-wide DNA methylation profiles. Genome Biol, 2013, 14(5): R44. [68] Tan QH, Frost M, Heijmans BT, von Bornemann Hjelmborg J, Tobi EW, Christensen K, Christiansen L. Epigenetic signature of birth weight discordance in adult twins. BMC Genomics, 2014, 15: 1062. [69] Córdova-Palomera A, Alemany S, Fatjó-Vilas M, Goldberg X, Leza JC, González-Pinto A, Nenadic I, Fa?anás L. Birth weight, working memory and epigenetic signatures in IGF2 and related genes: a MZ twin study. PLoS One, 2014, 9(8): e103639. [70] Ollikainen M, Ismail K, Gervin K, Kyll?nen A, Hakkarainen A, Lundbom J, J?rvinen EA, Harris JR, Lundbom N, Rissanen A, Lyle R, Pietil?inen KH, Kaprio J. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics, 2015, 7(1): 39. [71] Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J, Stockley TL, Best L, Chitayat D, Olney A, Ives E, Schneider A, Bestor TH, Li M, Sadowski P, Squire J. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet, 2002, 11(11): 1317–1325. [72] Laborie LB, Mackay DJG, Temple IK, Molven A, S?vik O, Nj?lstad PR. DNA hypomethylation, transient neonatal diabetes, and prune belly sequence in one of two identical twins. Eur J Pediatr, 2010, 169(2): 207–213. [73] Bliek J, Alders M, Maas SM, Oostra RJ, Mackay DM, van der Lip K, Callaway JL, Brooks A, van T Padje S, Westerveld A, Leschot NJ, Mannens MM. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur J Hum Genet, 2009, 17(12): 1625–1634. [74] Ollikainen M, Craig JM. Epigenetic discordance at imprinting control regions in twins. Epigenomics, 2011, 3(3): 295–306. [75] Bogdanos DP, Smyk DS, Rigopoulou EI, Mytilinaiou MG, Heneghan MA, Selmi C, Gershwin ME. Twin studies in autoimmune disease: genetics, gender and environment. J Autoimmun, 2012, 38(2–3): J156–J169. [76] Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, Jacinto FV, Lopez-Longo FJ, Dopazo J, Forn M, Peinado MA, Carre?o L, Sawalha AH, Harley JB, Siebert R, Esteller M, Miller FW, Ballestar E. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res, 2010, 20(2): 170–179. [77] Furukawa H, Oka S, Matsui T, Hashimoto A, Arinuma Y, Komiya A, Fukui N, Tsuchiya N, Tohma S. Genome, epigenome and transcriptome analyses of a pair of monozygotic twins discordant for systemic lupus erythematosus. Hum Immunol, 2013, 74(2): 170–175. [78] Dejeux E, Audard V, Cavard C, Gut IG, Terris B, Tost J. Rapid identification of promoter hypermethylation in hepatocellular carcinoma by pyrosequencing of etiologically homogeneous sample pools. J Mol Diagn, 2007, 9(4): 510–520. [79] Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D, Daunay A, Busato F, Mein CA, Manfras B, Dias KR, Bell CG, Tost J, Boehm BO, Beck S, Leslie RD. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet, 2011, 7(9): e1002300. [80] O'Brien JM. Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland, by P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki. N Engl J Med 343: 78–84, 2000. Surv Ophthalmol, 2000, 45(2): 167–168. [81] Allione A, Marcon F, Fiorito G, Guarrera S, Siniscalchi E, Zijno A, Crebelli R, Matullo G. Novel epigenetic changes unveiled by monozygotic twins discordant for smoking habits. PLoS One, 2015, 10(6): e0128265. [82] Kanno Y, Takane Y, Izawa T, Nakahama T, Inouye Y. The inhibitory effect of aryl hydrocarbon receptor repressor (AhRR) on the growth of human breast cancer MCF-7 cells. Biol Pharm Bull, 2006, 29(6): 1254–1257. [83] Brokken LJ, Lundberg-Giwercman Y, Rajpert-De Meyts ER, Eberhard J, St?hl O, Cohn-Cedermark G, Daugaard G, Arver S, Giwercman A. Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer. Front Endocrinol (Lausanne), 2013, 4: 4. [84] Zhang Y, Sch?ttker B, Ordó?ez-Mena J, Holleczek B, Yang RX, Burwinkel B, Butterbach K, Brenner H. F2RL3 methylation, lung cancer incidence and mortality. Int J Cancer, 2015, 137(7): 1739–1748. [85] Mu M, Ye S, Bai MJ, Liu GL, Tong Y, Wang SF, Sheng J. Birth weight and subsequent risk of asthma: a systematic review and meta-analysis. Heart Lung Circ, 2014, 23(6): 511–519. [86] Miura K, Nakagawa H, Tabata M, Morikawa Y, Nishijo M, Kagamimori S. Birth weight, childhood growth, and cardiovascular disease risk factors in Japanese aged 20 years. Am J Epidemiol, 2001, 153(8): 783–789. [87] Wang SF, Shu L, Sheng J, Mu M, Wang S, Tao XY, Xu SJ, Tao FB. Birth weight and risk of coronary heart disease in adults: a meta-analysis of prospective cohort studies. J Dev Orig Health Dis, 2014, 5(6): 408–419. [88] Lawani SO, Demerath EW, Lopez FL, Soliman EZ, Huxley RR, Rose KM, Alonso A. Birth weight and the risk of atrial fibrillation in whites and African Americans: the Atherosclerosis Risk In Communities (ARIC) study. BMC Cardiovasc Disord, 2014, 14: 69. [89] Zhang ZY, Kris-Etherton PM, Hartman TJ. Birth weight and risk factors for cardiovascular disease and type 2 diabetes in US children and adolescents: 10 year results from NHANES. Matern Child Health J, 2014, 18(6): 1423–1432. [90] Tierling S, Souren NY, Reither S, Zang KD, Meng-Hentschel J, Leitner D, Oehl-Jaschkowitz B, Walter J. DNA methylation studies on imprinted loci in a male monozygotic twin pair discordant for Beckwith-Wiede?mann syndrome. Clin Genet, 2011, 79(6): 546–553. [91] Bui M, Benyamin B, Shah S, Henders AK, Martin NG, Montgomery GW, McRae AF. Sharing a Placenta is Associated With a Greater Similarity in DNA Methylation in Monochorionic Versus Dichorionic Twin Pars in Blood at Age 14. Twin Res Hum Genet, 2015, 18(6): 680–685. [92] Thiede C, Prange-Krex G, Freiberg-Richter J, Bornh?user M, Ehninger G. Buccal swabs but not mouthwash samples can be used to obtain pretransplant DNA fingerprints from recipients of allogeneic bone marrow transplants. Bone Marrow Transplant, 2000, 25(5): 575–577. [93] Mari G, Roberts A, Detti L, Kovanci E, Stefos T, Bahado-Singh RO, Deter RL, Fisk NM. Perinatal morbidity and mortality rates in severe twin-twin transfusion syndrome: results of the International Amnioreduction Registry. Am J Obstet Gynecol, 2001, 185(3): 708–715. [94] Karatza AA, Wolfenden JL, Taylor MJO, Wee L, Fisk NM, Gardiner HM. Influence of twin-twin transfusion syndrome on fetal cardiovascular structure and function: prospective case-control study of 136 monochorionic twin pregnancies. Heart, 2002, 88(3): 271–277. |
[1] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[2] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[3] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[4] | 张统雨,朱才业,杜立新,赵福平. 羊重要性状全基因组关联分析研究进展[J]. 遗传, 2017, 39(6): 491-500. |
[5] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[6] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[7] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[8] | 刘洋洋, 崔恒宓. DNA甲基化分析中重亚硫酸盐处理DNA转化效率的评估方法[J]. 遗传, 2015, 37(9): 939-944. |
[9] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
[10] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[11] | 陈晓颖, 叶华丹, 洪青晓, 周安楠, 汤琳琳, 段世伟. DNA甲基化修饰对血管疾病稳态失衡的影响[J]. 遗传, 2015, 37(3): 221-232. |
[12] | 张君, 张望强, 丁毓磊, 许彭, 王婷婷, 徐文静, 陆环, 刘宗智, 谢建新. 腹部脂肪组织APN基因DNA甲基化及mRNA表达与维吾尔族T2DM的相关性[J]. 遗传, 2015, 37(3): 269-275. |
[13] | 李红东,洪贵妮,郭政. 外周全血中与老化相关的DNA甲基化标记的来源[J]. 遗传, 2015, 37(2): 165-173. |
[14] | 杨文旭, 潘虹. MeCP2在Rett综合征中的调控机制[J]. 遗传, 2014, 36(7): 625-630. |
[15] | 陈琦, 李少伟, 贾宇臣, 王利. 蓝莓花青素通过下调p53基因DNA甲基化抑制口腔癌KB细胞增殖及诱导细胞凋亡[J]. 遗传, 2014, 36(6): 566-573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: