[1] Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet , 2009, 10(5): 295-304. [2] Gehring M, Bubb KL, Henikoff S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science , 2009, 324(5933): 1447-1451. [3] Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet , 2013, 14(3): 204-220. [4] Tomizawa SI, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G, Sasaki H. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development , 2011, 138(5): 811-820. [5] Kulis M, Esteller M. DNA methylation and cancer. Adv Genet , 2010, 70: 27-56. [6] Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. DNA methylation: bisulphite modification and analysis. Nat Protoc , 2006, 1(5): 2353-2364. [7] Shen LL, Kondo Y, Guo Y, Zhang JX, Zhang L, Ahmed S, Shu JM, Chen XL, Waterland RA, Issa JPJ. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. Plos Genet , 2007, 3(10): e181. [8] Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet , 2010, 11(3): 191-203. [9] Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development , 2007, 134(22): 3959- 965. [10] Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet , 2007, 39(4): 457-466. [11] Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, Robinson MD, Clark SJ. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl- CpG binding domain (MBD) protein capture for genome- wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics , 2011, 6(1): 34-44. [12] Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science , 2010, 328(5980): 916-919. [13] Kristensen LS, Mikeska T, Krypuy M, Dobrovic A. Sensitive Melting Analysis after Real Time-Methylation Specific PCR (SMART-MSP): high-throughput and probe- free quantitative DNA methylation detection. Nucleic Acids Res , 2008, 36(7): e42. [14] Shen LL, Guo Y, Chen XL, Ahmed S, Issa JP. Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. BioTechniques , 2007, 42(1): 48-58. [15] Jiang MH, Zhang YH, Fei J, Chang XX, Fan WW, Qian XQ, Zhang TB, Lu DR. Rapid quantification of DNA methylation by measuring relative peak heights in direct bisulfite-PCR sequencing traces. Lab Invest , 2010, 90(2): 282-290. [16] Irahara N, Nosho K, Baba Y, Shima K, Lindeman NI, Hazra A, Schernhammer ES, Hunter DJ, Fuchs CS, Ogino S. Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn , 2010, 12(2): 177-183. [17] Brinkman AB, Gu HC, Bartels SJJ, Zhang YY, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg HG. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res , 2012, 22(6): 1128-1138. [18] Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity , 2011, 107(1): 1-15. [19] Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet , 2011, 12(7): 499-510. [20] Liu L, Li YH, Li SL, Hu N, He YM, Pong R, Lin DN, Lu LH, Law M. Comparison of next-generation sequencing systems. J Biomed Biotechnol , 2012, 2012: ArticleID 251364. [21] Byun HM, Siegmund KD, Pan F, Weisenberger DJ, Kanel G, Laird PW, Yang A |