遗传 ›› 2012, Vol. 34 ›› Issue (8): 1009-1019.doi: 10.3724/SP.J.1005.2012.01009
许红恩1, 张化浩1, 韩民锦1, 沈以红1, 黄先智1, 向仲怀1, 张泽1,2
收稿日期:
2012-02-14
修回日期:
2012-04-01
出版日期:
2012-08-20
发布日期:
2012-08-25
通讯作者:
张泽
E-mail:zezhang@swu.edu.cn
基金资助:
西南大学研究生科技创新基金项目(优博项目)(编号:kb2010106)资助
XU Hong-En1, ZHANG Hua-Hao1, HAN Min-Jin1, SHEN Yi-Hong1, HUANG Xian-Zhi1, XIANG Zhong-Huai1, ZHANG Ze1, 2
Received:
2012-02-14
Revised:
2012-04-01
Online:
2012-08-20
Published:
2012-08-25
摘要: 重复序列是真核生物基因组的重要组成成分, 根据其序列特征及在基因组中的存在形式, 可以进一步分为串联重复、片段重复和散在重复。其中, 散在重复大多起源于转座子。根据转座介质的不同, 转座子又可分为DNA和逆转录转座子。转座子的转座和扩增对基因的进化和基因组的稳定具有显著的影响; 同时与其他类型的重复序列相比, 转座子的结构和分类更为复杂多样, 使得对转座子的鉴定和分类更为复杂和困难。鉴于此, 文章简要概括了转座子的功能及分类, 总结了真核生物转座子鉴定、分类和注释的3个步骤:(1)重复序列库的构建; (2)重复序列的校正和分类; (3)基因组注释。着重介绍了每一步骤所采用的不同计算方法, 比较了不同方法的优缺点。只有把多种方法结合起来使用才能实现全基因组转座子的精确鉴定、分类和注释, 这将为转座子的全基因组鉴定和分类提供借鉴意义。
许红恩,张化浩,韩民锦,沈以红,黄先智,向仲怀,张泽. 真核生物转座子鉴定和分类计算方法[J]. 遗传, 2012, 34(8): 1009-1019.
XU Hong-En, ZHANG Hua-Hao, HAN Min-Jin, SHEN Yi-Hong, HUANG Xian-Zhi, XIANG Zhong-Huai, ZHANG Ze. Computational approaches for identification and classification of transposable elements in eukaryotic genomes[J]. HEREDITAS, 2012, 34(8): 1009-1019.
[1] Britten RJ, Kohne DE. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science, 1968, 161 (3841): 529-540.[2] Waring M, Britten RJ. Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science, 1966, 154(3750): 791-794.[3] Rubin CM, Houck CM, Deininger PL, Friedmann T, Schmid CW. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature, 1980, 284(5754): 372 -374.[4] Singer MF. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell, 1982, 28(3): 433-434.[5] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Chen YJ. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.[6] Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol, 2002, 11(12): 2453- 2465.[7] Lerat E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity, 2009, 104(6): 520-533.[8] Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 1994, 371(6494): 215-220.[9] Eichler EE. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet, 2001, 17(11): 661-669.[10] Feschotte C, Pritham EJ. Computational analysis and paleogenomics of interspersed repeats in eukaryotes. In: Stojanovic N, ed. Computational genomics: current methods. London: Taylor & Francis, 2007: 31-54.[11] Wessler SR. Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci USA, 2006, 103(47): 17600-17601.[12] Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetica, 2002, 115(1): 49-63.[13] Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science, 2004, 303 (5664): 1626-1632.[14] Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res, 1998, 8(5): 464-478.[15] Kapitonov VV, Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA, 2003, 100(11): 6569- 6574.[16] Osanai-Futahashi M, Suetsugu Y, Mita K, Fujiwara H. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. Insect Biochem Mol Biol, 2008, 38(12): 1046-1057.[17] SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet, 1998, 20(1): 43-45.[18] Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL. Two retrotransposons maintain telomeres in Drosophila. Chromosome Res, 2005, 13(5): 443- 453.[19] Gregory TR. Synergy between sequence and size in large-scale genomics. Nature Rev Genet, 2005, 6(9): 699-708.[20] 陈建军, 王瑛. 植物基因组大小进化的研究进展. 遗传, 2009, 31(5): 464-470.[21] Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev, 2005, 15(6): 621-627.[22] 陈志伟, 吴为人. 植物中的反转录转座子及其应用. 遗传, 2004, 26(1): 122-126.[23] Bennetzen JL. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol, 2000, 42(1): 251-269.[24] Devine SE, Chissoe SL, Eby Y, Wilson RK, Boeke JD. A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes. Genome Res, 1997, 7(5): 551-563.[25] Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC. A whole-genome assembly of Drosophila. Science, 2000, 287(5461): 2196 -2204.[26] Reese MG, Hartzell G, Harris NL, Ohler U, Abril JF, Lewis SE. Genome annotation assessment in Drosophila melanogaster. Genome Res, 2000, 10(4): 483-501.[27] Bergman CM, Quesneville H. Discovering and detecting transposable elements in genome sequences. Brief Bioinform, 2007, 8(6): 382-392.[28] McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA, 1950, 36(6): 344-355.[29] McClintock B. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol, 1956, 21: 197-216.[30] Britten RJ, Davidson EH. Gene regulation for higher cells: a theory. Science, 1969, 165(3891): 349-357.[31] Gonzalez J, Petrov DA. The adaptive role of transposable elements in the Drosophila genome. Gene, 2009, 448(2): 124-133.[32] Strobel E, Dunsmuir P, Rubin GM. Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell, 1979, 17(2): 429-439.[33] Hickey DA. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics, 1982, 101(3-4): 519-531.[34] Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature, 1980, 284(5757): 601-603.[35] Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature, 1980, 284(5757): 604-607.[36] Brosius J. Retroposons--seeds of evolution. Science, 1991, 251(4995): 753.[37] McDonald JF. Evolution and consequences of transposable elements. Curr Opin Genet Dev, 1993, 3(6): 855-864.[38] McDonald JF. Transposable elements: possible catalysts of organismic evolution. Trends Ecol Evol, 1995, 10(3): 123-126.[39] Kidwell MG, Lisch DR. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution, 2001, 55(1): 1-24.[40] Sheen FM, Levis RW. Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA, 1994, 91(26): 12510- 12514.[41] Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B, Levis RW, Pardue ML. HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster. Mol Cell Biol, 1992, 12(9): 3910-3918.[42] Biemont C, Vieira C. Genetics: junk DNA as an evolutionary force. Nature, 2006, 443(7111): 521-524.[43] Finnegan DJ. Transposable elements. Curr Opin Genet Dev, 1992, 2(6): 861-867.[44] McDonald JF, Matyunina LV, Wilson S, Jordan IK, Bowen NJ, Miller WJ. LTR retrotransposons and the evolution of eukaryotic enhancers. Genetica, 1997, 100(1-3): 3-13.[45] Montgomery E, Charlesworth B, Langley CH. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet Res, 1987, 49(1): 31-41.[46] Brandt J, Schrauth S, Veith AM, Froschauer A, Haneke T, Schultheis C, Gessler M, Leimeister C, Volff JN. Transposable elements as a source of genetic innovation: expression and evolution of a family of retrotransposon-derived neogenes in mammals. Gene, 2005, 345(1): 101-111.[47] Britten RJ. DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci USA, 1996, 93(18): 9374-9377.[48] Britten RJ. Coding sequences of functioning human genes derived entirely from mobile element sequences. Proc Natl Acad Sci USA, 2004, 101(48): 16825-16830.[49] Cordaux R, Udit S, Batzer MA, Feschotte C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA, 2006, 103(21): 8101- 8106.[50] Jiang N, Bao ZR, Zhang XY, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature, 2004, 431(7008): 569-573.[51] Lai JS, Li YB, Messing J, Dooner HK. Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA, 2005, 102(25): 9068-9073.[52] Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet, 2005, 37(9): 997-1002.[53] Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet, 1989, 5(4): 103-107.[54] Eickbush T, Malik H. Origins and evolution of retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM, eds. Mobile DNA II. Washington, DC: ASM Press, 2002: 1111- 1144.[55] Ohshima K, Hamada M, Terai Y, Okada N. The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements. Mol Cell Biol, 1996, 16(7): 3756-3764.[56] 程旭东, 凌宏清. 植物基因组中的非LTR反转录转座子SINEs和LINEs. 遗传, 2006, 28(6): 731- 736.[57] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25(17): 3389-3402.[58] Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res, 2005, 110(1-4): 462- 467.[59] Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res, 2006, 34(Database issue): D32- D36.[60] Ouyang S, Buell CR. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res, 2004, 32(Database issue): D360-D363.[61] Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J. SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics, 2010, 11(1): 113.[62] Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, Aguilar-Rodriguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A. The Gypsy Database (GyDB) of mobile genetic elements: release 2. 0. Nucleic Acids Res, 2011, 39(Database issue): D70-D74.[63] Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A. The Pfam protein families database. Nucleic Acids Res, 2010, 38(Database issue): D211-D222.[64] Kennedy RC, Unger MF, Christley S, Collins FH, Madey GR. An automated homology-based approach for identifying transposable elements. BMC Bioinformatics, 2011, 12(1): 130.[65] Bao Z, Eddy SR. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res, 2002, 12(8): 1269-1276.[66] Parsons JD. Miropeats: graphical DNA sequence comparisons. Comput Appl Biosci, 1995, 11(6): 615-619.[67] Edgar RC, Myers EW. PILER: identification and classification of genomic repeats. Bioinformatics, 2005, 21(Suppl. 1): i152-i158.[68] Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res, 2001, 29 (22): 4633-4642.[69] Campagna D, Romualdi C, Vitulo N, Del Favero M, Lexa M, Cannata N, Valle G. RAP: a new computer program for de novo identification of repeated sequences in whole genomes. Bioinformatics, 2005, 21(5): 582-588.[70] Volfovsky N, Haas BJ, Salzberg SL. A clustering method for repeat analysis in DNA sequences. Genome Biol, 2001, 2(8): RESEARCH0027, doi: 10.1186/gb-2001-2-8- research0027.[71] Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics, 2005, 21(Suppl. 1): i351-i358.[72] Li R, Ye J, Li S, Wang J, Han Y, Ye C, Wang J, Yang H, Yu J, Wong G, Wang J. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comp Biol, 2005, 1(4): e43.[73] Kurtz S, Narechania A, Stein JC, Ware D. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics, 2008, 9(1): 517.[74] Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioinformatics, 2002, 18(3): 440-445.[75] DeBarry JD, Liu R, Bennetzen JL. Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the Assisted Automated Assembler of Repeat Families (AAARF) algorithm. BMC Bioinformatics, 2008, 9(1): 235.[76] Saha S, Bridges S, Magbanua ZV, Peterson DG. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res, 2008, 36(7): 2284-2294.[77] Pevzner PA, Tang H, Tesler G. De novo repeat classification and fragment assembly. Genome Res, 2004, 14(9): 1786-1796.[78] Gu WJ, Castoe TA, Hedges DJ, Batzer MA, Pollock DD. Identification of repeat structure in large genomes using repeat probability clouds. Anal Biochem, 2008, 380(1): 77-83.[79] de Koning APJ, Gu WJ, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet, 2011, 7(12): e1002384.[80] Tu Z. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA, 2001, 98(4): 1699- 1704.[81] Chen Y, Zhou FF, Li GJ, Xu Y. MUST: A system for identification of miniature inverted- repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. Gene, 2009, 436(1-2): 1-7.[82] Yang G, Hall TC. MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res, 2003, 31(13): 3659-3665.[83] Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res, 2010, 38(22): e199.[84] McCarthy EM, McDonald JF. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics, 2003, 19(3): 362-367.[85] Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res, 2007, 35(S2): W265-W268.[86] Rho M, Choi JH, Kim S, Lynch M, Tang H. De novo identification of LTR retrotransposons in eukaryotic genomes. BMC Genomics, 2007, 8(1): 90.[87] Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 2008, 9(1): 18.[88] Steinbiss S, Willhoeft U, Gremme G, Kurtz S. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res, 2009, 37(21): 7002- 7013.[89] Rho M, Tang H. MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes. Nucleic Acids Res, 2009, 37(21): e143.[90] Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res, 2004, 14(10A): 1861-1869.[91] Yang L, Bennetzen JL. Structure-based discovery and description of plant and animal Helitrons. Proc Natl Acad Sci USA, 2009, 106(31): 12832-12837.[92] Kramerov DA, Vassetzky NS. Origin and evolution of SINEs in eukaryotic genomes. Heredity, 2011, 107(6): 487-495.[93] Kramerov DA, Vassetzky NS. Short retroposons in eukaryotic genomes. Int Rev Cytol, 2005, 247: 165-221.[94] Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27(2): 573-580.[95] Kolpakov R, Bana G, Kucherov G. mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res, 2003, 31(13): 3672-3678.[96] Sharma PC, Grover A, Kahl G. Mining microsatellites in eukaryotic genomes. Trends Biotechnol, 2007, 25(11): 490-498.[97] Abrusan G, Grundmann N, DeMester L, Makalowski W. TEclass--a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics, 2009, 25(10): 1329-1330.[98] Feschotte C, Keswani U, Ranganathan N, Guibotsy ML, Levine D. Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes. Genome Biol Evol, 2009, 1: 205-220.[99] Andrieu O, Fiston AS, Anxolabéhère D, Quesneville H. Detection of transposable elements by their compositional bias. BMC Bioinformatics, 2004, 5: 94.[100] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 2007, 8(12): 973-982.[101] Seberg O, Petersen G. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat Rev Genet, 2009, 10(4): 276.[102] Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Rev Genet, 2008, 9(5): 411-412.[103] Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics, 2006, 7: 474.[104] Huda A, Jordan IK. Analysis of transposable element sequences using CENSOR and RepeatMasker. Methods Mol Biol, 2009, 537: 323-336.[105] Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, Anxolabehere D. Combined evidence annotation of transposable elements in genome sequences. PLoS Comp Biol, 2005, 1(2): 166-175.[106] Smith CD, Edgar RC, Yandell MD, Smith DR, Celniker SE, Myers EW, Karpen GH. Improved repeat identification and masking in Dipterans. Gene, 2007, 389(1): 1-9.[107] Estill JC, Bennetzen JL. The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes. Plant Methods, 2009, 5(1): 8. |
[1] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[2] | 郑超星, 马小凤, 张永华, 李洪杰, 张根发. 真核生物mRNA翻译起始机制研究进展[J]. 遗传, 2018, 40(8): 607-619. |
[3] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[4] | 蓝洋,胡江涛,张玉娟. 化学计量基因组学研究进展[J]. 遗传, 2017, 39(2): 89-97. |
[5] | 沈丹,陈才,王赛赛,陈伟,高波,宋成义. Tc1/Mariner转座子超家族的研究进展[J]. 遗传, 2017, 39(1): 1-13. |
[6] | 周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用[J]. 遗传, 2016, 38(3): 227-242. |
[7] | 刘茜,王瑾晖,李晓宇,岑山. 逆转录转座子LINE-1与肿瘤的发生和发展[J]. 遗传, 2016, 38(2): 93-102. |
[8] | 马兴亮,刘耀光. 植物CRISPR/Cas9基因组编辑系统与突变分析[J]. 遗传, 2016, 38(2): 118-125. |
[9] | 王进龙, 王建, 田春艳. KRAB型锌指蛋白的进化及在物种演化中的功能[J]. 遗传, 2016, 38(11): 971-978. |
[10] | 殷丽琴, 付绍红, 杨进, 李云, 王继胜, 王茂林. 植物单倍体的产生、鉴定、形成机理及应用[J]. 遗传, 2016, 38(11): 979-991. |
[11] | 刘振, 徐建红. 高通量测序技术在转座子研究中的应用[J]. 遗传, 2015, 37(9): 885-898. |
[12] | 朱帅旗, 龚一富, 杭雨晴, 刘浩, 王何瑜. 绿色杜氏藻转录组分析[J]. 遗传, 2015, 37(8): 828-836. |
[13] | 许禔森, 李学贵, 焦德杰, 谢兆辉, 戴忠民. 真核生物和原核生物mRNA 5′至3′方向的降解机制[J]. 遗传, 2015, 37(3): 250-258. |
[14] | 李书粉,李莎,邓传良,卢龙斗,高武军. 转座子在植物XY性染色体起源与演化过程中的作用[J]. 遗传, 2015, 37(2): 157-164. |
[15] | 夏凯, 梁新乐, 李余动. 醋酸菌中CRISPR位点的比较基因组学与进化分析[J]. 遗传, 2015, 37(12): 1242-1250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: